2013 H2 Physics Prelim 2 Exam – Paper 3 Solutions

1	(a)	(i)	The reaction force must have a horizontal component because the horizontal component of the tension is unbalanced (or needs to be balanced by another horizontal force).	[B1]
			It must also have a vertical force to produce an anti-clockwise moment in	
			order to balance the clockwise moment caused by the tension when moment	
			is taken about his C.G	[B1]
			OR since all forces must pass through a common point, the reaction force from	
			the wall on the person is at an angle to the horizontal. Hence there are	
			herizontal and vertical components	
		(::)	The reaction force must point about porthwest towards the intersection of	[01]
		(11)	the visibilities and tension	[B1]
	(1)			
	(b)		Equilibrium of horizontal forces:	
			$(F_R)_X = 610 \sin 20^\circ$ (208.6 N leftward)	[M1]
			Equilibrium of vertical forces:	
			$(F_R)_X + 610 \cos 20^\circ = 590$ (16.79 N upward)	[M1]
			$F_R = \text{squareroot} [(F_R)_X^2 + (F_R)_Y^2] = 209.3 \text{ N}$	[A1]
			Angle with vertical = $\tan^{-1} \left[(F_R)_X / (F_R)_Y \right] = 85.4^\circ$	[A1]
2	(a)	(i)	$v = f\lambda$	
	. ,	.,	0.90 = f(0.30)	
			f = 3.0 Hz	
		(ii)		
		• •	$f = \frac{1}{28}$	
			$\int 2\pi \sqrt{m}$	
			m = 0.0788 kg	
	(b)	(i)	Amplitude of the vertical oscillations will also increase. [A1]	
	. ,	.,	Driving force is larger due to the larger amplitude of wave, OR more	
			energy transfer. [M1]	
		(ii)	wavelength of wave increases and since the speed remains the same,	
		• •	by $v = f \lambda$ frequency of wave will decrease. [M1]	
			(wavelength has increased, driving frequency will decrease, for the	
			same speed. Since driving frequency is not equal to natural frequency,	
			amplitude will decrease. [A1] A.k.a. no more resonance)	
		(iii)	Damping force increases [M1] \rightarrow amplitude decreases [A1]	
		. ,		
3	(a)		The graph in Fig. 3.1 curves towards the current axis	[B1]
	(~)		Hence the ratio of V to I will decreases with increasing voltage	[=_] [B1]
			Thenee the ratio of V to Phill decreases with the reasing voltage	[01]
			OB the line drawn from origin to a point on the curve becomes gentler as	
			voltage increases	[[]1]
			Unage increases.	[DT]
			decreases	[04]
	/ `		decreases.	[R]]
	(b)		The semiconductor has a band structure with a small band gap between the	
			fully-filled valence band and the totally-unfilled conduction band at zero	
			kelvin.	[B1]
			With an increase in temperature, some electrons from the valence band can	

			 easily gain enough thermal energy to promote to the conduction band via the small gap. The electrons in the conduction band and holes in valence band behave as mobile charge carriers, increasing the number of mobile positive and negative charge 			
			<u>carriers</u> .			[B1]
	(c)	(i)	Current through X = 90 – 47	' = 43 mA		[C1]
		(;;)	From Fig. 3.1, p.d. across X	= 6.2 V ross 180 O resistor – L v P		[A1]
		(11)	$= 47 \times 10^{-3} \times 180 = 8.46 \text{ V}$	1033 100 22 16313(0) - 1 X IV		[C1]
			p.d. across R = p.d. across R	and $X - p.d. across X = 8$.	46 – 6.20 = 2.26 V	
			R = V / I = 2.26 / 0.043 = 52.	<u>6 Ω.</u>		[A1]
		(111)	Since the voltage across the means that there is internal	e 180 ohm resistor is less t Fresistance in the cell	than 9 V (8.46V), this	[B1]
4	(a)		A single change made to the experiment	Minimum wavelength, λ_o	Wavelengths of K spectra lines	
			V is increased	Decrease	Unchanged	
			I is decreased	Unchanged	unchanged	
			<i>M</i> is replaced with another metal of a lower mass number	Unchanged	increase	
			All 6 blanks correct – 3M All 4 blanks correct – 2M Any 2 blanks correct or m	iore – 1M		
	(b)	(i)	The minimum wavelength is emitted as a photon in a single collision by the electron which is all its kinetic energy. [B1] $eV = hc / \lambda_o$ $\lambda_o = hc / eV$ $= (6.63 \times 10^{-34})(3 \times 10^8) / (1.60 \times 10^{-19}) V$ [M1] $= 1.24 \times 10^{-6} / V$ = 1240 nm / V [A1 for conversion to nm]			
		(ii)	$\lambda_o = 1240 \text{ nm} / \text{V}$ = 1240 nm / 50 x 10 ³ V = 0.0248 nm	[A1]		
5	(a)	(i)	curve is not smooth, fluctutations, etc			
		(ii)	Curve is same shape or same half life,, not affected by temperature etc			
	(b)	(i)	$\lambda = \ln 2/t_{1/2} = 0.193 \text{ day}^{-1} = 2.23 \times 10^{-6} \text{ s}^{-1}$			
		(ii)	$N = \{(2.24 \times 10^{-3})/224\} \times 6$ = 6.02 × 10 ¹⁸	6.02 × 10 ²³		

			Acitivity = $\lambda N = 2.23 \times 10^{-6} \times 6.02 \times 10^{18}$	
			$= 1.3 \times 10^{13}$ Bq	
		(iii)	$A = A_0 e(-\ln 2.t/T)$	
			$0.1 = \exp(-\ln 2.n)$	
			n = 3.32	
6	(a)		It has 2 protons and two neutrons.	
	(b)		This is a fission process. The reactants have a smaller mass as	
			compared to the products, hence with reference to the B.E per nucleon	
			greater stability.	
			This is a fusion process [B1], because smaller nuclei fused to form a	
			heavier nucleus. [B1]	
	(C)		Lotal rest mass of reactants = $13.9993 \ u + 4.0015 \ u = 18.0008 \ u$	
			Difference in rest mass = $18.0020 \ u - 18.0008 \ u$	
			$= 1.2 \times 10^{-3} \times 1.66 \times 10^{-27}$	
			$=1.992 \times 10^{-30} \text{ kg}$	
	(d)		$K F = -\Lambda mc^2$	
	(0)		$= (1.992 \times 10^{-30})(3.0 \times 10^8)^2$	
			$= 1.7928 \times 10^{-13} J$	
	(e)		Lotal initial momentum, $P_{T,l} = (3.0 \times 10^7)(13.993 \text{ u}) + 0$ Total final momentum, $P_{T,l} = (6.0 \times 10^7)(1.0073 \text{ u}) + (16.9957 \text{ u})(v)$	
			By conservation of linear momentum,	
			$P_{T,I} = P_{T,f}$	
			$(3.0 \times 10)(13.993 u) + 0 = (0.0 \times 10)(1.0073 u) + (10.9937 u)(0)$	
			$v = 3.51 \times 10^6 \text{ m s}^{-1}$	
			Direction: Right	
	(f)	(i)	Momentum of a body is the product of its mass and velocity	
	(.)	(ii)	By conservation of momentum,	
			$0 = m_1 v_1 - m_2 v_2$	
			students must show understanding that both particles move off in	
			$v = m_{\rm c}$	
			$\Rightarrow \frac{1}{v_{1}} = \frac{m_{2}}{m}$	
		(jiji)	1.	
		(···)	$1_{(6,7,1)} 10^{-27} = 12 = 10^{-14}$	
			$\frac{-(6.7 \times 10^{-7})v^{-}}{2} = 1.2 \times 10^{-7}$	
			$\Rightarrow v = 1.9 \text{ x} 10^6 \text{ m s}^{-1}$	
		(iii)	2. $v/1.9 \times 10^6 = (6.7 \times 10^{-27})/(4.0 \times 10^{-25} - 6.7 \times 10^{-27})$ [C1]	
			→ $v = 3.3 \times 10^4 \text{ ms}^{-1}$ [A1]	
			Alternative method:	

			$(mv)_{recoiling nucleus} = (mv)_{\alpha}$	
			$(4.0 \times 10^{-25} - 6.7 \times 10^{-27})v = 1.3 \times 10^{-20}$	
			\Rightarrow v = 3.3 x 10 ⁴ m s ⁻¹	
		(iii)	3.	
			The alpha-particle has energy less than the energy of the potential barrier of the nucleus [B1]	
			However, since its wave function is non-zero beyond the barrier (outside the nucleus), it has a finite probability of decaying/emitting/escaping	
			from the nucleus. [B1]	
7	(a)		It is the work done per unit positive charge [M1] in moving a charge from	
	(h)	(:)	infinity to the point. [A1]	
	(a)	(1)	$F = \frac{Q_1 Q_2}{4\pi \epsilon r^2}$	
			$(3.6 \times 10^{-9})^2$	
			$=\frac{1}{4\pi\varepsilon(0.30)^2}$	
			$= 1.29 \times 10^{-6} N$	
			1 mark for the substitution	
		(ii)	The total potentials at P and Q are the same. [M1]	
			Work done is the product of charge and potential difference between P	
		(iii)	At P.	
		(,	$PE = Q_1 + Q_2$	
			$r L = \frac{1}{4\pi\varepsilon r_1} + \frac{1}{4\pi\varepsilon r_2}$	
			$=\frac{(3.6\times10^{-9})}{+}\frac{(3.6\times10^{-9})}{+}$	
			$4\pi\epsilon(0.075)$ $4\pi\epsilon(0.225)$	
			$= 575.5 JC^{-1}$	
			1 mark for answer	
		(iv)	At the midpoint of AB , find potential (1M)	
			$PE = \frac{Q_1}{4\pi cr} + \frac{Q_2}{4\pi cr}$	
			$4\pi\epsilon I_1 + 4\pi\epsilon I_2$	
			$=2\times\frac{(3.0\times10^{-7})}{4\pi\epsilon(0.15)}$	
			$= 431.6 JC^{-1}$	
			Work done = q ΔV - (-1.6 x 10 ⁻¹⁹) (575.5 - (431.6)) [M1]	
			$= -2.30 \times 10^{-17} \text{ J} $ [A1]	
		(.)		
	(c)	(i) (ii)	X = 10.0 CM [A1] The direction of the electric field is the negative potential gradient. It is in	
		(11)	the direction from positive to negative charge.	
			OR direction of field points towards direction of decreasing potential.	
	(b)	(i) (ii) (iii) (iv) (i)	infinity to the point. [A1] $F = \frac{Q_1Q_2}{4\pi c r^2}$ $= \frac{(3.6 \times 10^{-9})^2}{4\pi c (0.30)^2}$ $= 1.29 \times 10^{-6} N$ 1 mark for the substitution 1 mark for the answer. The total potentials at P and Q are the same. [M1] Work done is the product of charge and potential difference between P and Q. [M1] At P, $PE = \frac{Q_1}{4\pi c r_1} + \frac{Q_2}{4\pi c r_2}$ $= \frac{(3.6 \times 10^{-9})}{4\pi c (0.075)} + \frac{(3.6 \times 10^{-9})}{4\pi c (0.225)}$ $= 575.5 JC^{-1}$ 1 mark for answer At the midpoint of AB , find potential (1M) $PE = \frac{Q_1}{4\pi c r_1} + \frac{Q_2}{4\pi c r_2}$ $= 2 \times \frac{(3.6 \times 10^{-9})}{4\pi c (0.15)}$ $= 431.6 JC^{-1}$ Work done = q ΔV $= (-1.6 \times 10^{-19}) (575.5 - (431.6)) $ [M1] $= -2.30 \times 10^{-17} J $ [A1] The direction of the electric field is the negative potential gradient. It is in the direction of field points towards direction of decreasing potential. [B1]	

			The electric field is directed from A to B. [B1]			
		(iii)	At x = 18 cm,			
			$0 = \frac{Q_1}{Q_2} + \frac{Q_2}{Q_2}$			
			$4\pi\varepsilon r_1 + 4\pi\varepsilon r_2$			
			(3.6×10^{-9}) Q			
			$0 = \frac{1}{4\pi\varepsilon(0.18)} + \frac{1}{4\pi\varepsilon(0.12)}$			
			$Q = -2.4 \times 10^{-9} C$			
			1 mark for the equation (sum of potentials equal to 0)			
			1 mark for substitution			
		(:,.)	1 mark for the answer. The field strength is the negative potential gradient or the gradient of the			
		(17)				
			gidpii. [Di] Field strength is the highest at the steenest gradient at point y 27 am			
			Field strength is the highest at the steepest gradient at point $x = 27$ cm.			
			[D]] The electric force is the product of the charge and the gradient of the			
			araph [B1]			
			$\frac{1}{2}$			
			There, the force is maximum at $x = 27$ cm. [A0]			
8	(a)	(i)				
	、 ,	()				
			The particle follows a parabolic path.			
		(ii)	У́ В			
			v x x x x			
			X F X X			
			x x x x			
			ÿ			
			The particle follows a circular path.			
	(h)	(i)	When electron is accelerated to the higher potential of 0.V			
	(0)	(י)	electron loses electric potential energy = eAV			

		By conservation of energy, Gain in kinetic energy = loss in EPE [B1] $\frac{1}{2} (2.84 \times 10^{-26)} v^2 = (1.6 \times 10{\text{-}}19)(3000)$ $v = 1.83 \times 10^5 \text{ m s}^{-1}$ [A1]	
	(ii)	 When the negative ions enter into the region of electric and magnetic fields, The ions experience a magnetic force to the left, [B1] if P2 is set to be positive, the ions can experience an electric force to the right. [B1] When the two forces balanced each other, the net force on the ions would be zero [B1] and the ions can pass through without being deflected. 	
	(iii)	Magnetic force = electric force Bqv = eE E = $(0.83 \text{ T})(1.83 \times 10^5 \text{ m s}^{-1}) = 1.53 \times 10^5 \text{ V m}^{-1}$	
(c)	(i)	Out of the plane of the paper	
	(ii)	When the ions enter into the magnetic field, it experiences a magnetic force at right angles to the direction of motion of the ions. [B1] The magnetic force provides the centripetal force, changing the direction of velocity of the ions and keeping the speed constant. [B1]	
	(iii)	Magnetic force provides the centripetal force $Bqv = mv^2/r$ [C1] $r = mv/Bq$ [C1][C1]Since the speed of the ions exiting point O have the same value, B is constant and charge the same,Radius is proportional to the mass <i>m</i> of the ions[C1]OA = 2(radius) is proportional to the mass <i>m</i> of the ions	
	(iv)	The larger the mass, the greater the distance OA, and we can distinguish the different ions.	
(d)	(i)	for same specific charge, no change to the speed	
	(ii)	NO change, ions still pass through undeflected.	
	(iii)	No change, since radius is proportional to q/m.	