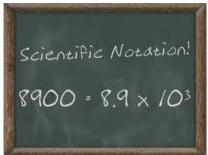
Mathematics - Important Notes and Formulas

Numbers

Туре	Definition		
Natural numbers	All whole numbers except 0 eg: 1, 2, 3, 4, 5		
Even numbers	0, 2, 4, 6, 8, 10		
Odd numbers	1, 3, 5, 7, 9		
Integers	whole numbers that can be positive, negative, or zero eg: -1, -2, -3, 1, 2, 3		
Prime number	a natural number which has only 2 different factors eg: 2, 3, 5, 7, 11, 13		
Composite number	a natural number that has more than 2 different factors eg: 4, 6, 8, 9		
Real number	Include rational and irrational numbers, fractions, and integers		
Rational number	a number that can be expressed as a fraction or as a ratio		
Irrational number	a number that cannot be expressed as a fraction or a ratio of 2 integers. eg: pi and roots		

Test of Divisibility


Divisible by	Test
2	if the number is even
3	if the sum of the digits is divisible by 3
4	if the number formed by the last 2 digits is divisible by 4
5	if the last digit is 0 or 5
9	if the sum of its digits is divisible by 9
10	if the last digit is 0
11	if the difference between the sum of the digits in the odd places and the sum of the digits in the even places is equal to 0 or is a multiple of 11

Standard form

This is a convenient way to write very large or very small numbers, using the from a x 10ⁿ, where n is a positive or negative integer, and a s between 1 to 10 inclusive.

More examples:

123 400 written as standard form is 1.234 x 10^5 0.0000987 written as standard form is 9.87 x 10^{-5}

Multiplying numbers in standard form

 $(3.6 \times 10^7) \times (9 \times 10^{-5}) = (3.6 \times 9) \times (10^7 \times 10^{-5})$ = 32.4 × 10²

Dividing numbers in standard form

 $(5.8 \times 10^9) \div (3.2 \times 10^{-3}) = (5.8 \div 3.2) \times (10^9 \div 10^{-3})$ = 1.81 × 10¹²

Adding and Subtracting numbers in standard form

- Make the index between the 2 numbers the same so that it is easier to factorise the numbers before adding

eg

 $7.5 \times 10^8 + 8 \times 10^3 = 7.5 \times 10^8 + 0.00008 \times 10^8$ = 10⁸ (7.5 + 0.00008)

 $= 7.50008 \times 10^{8}$

Scales and Maps

Given that a map has a scale of 1:10 000, this means that 1cm on the map represents 10,000cm on the actual ground.

 $1 \text{cm} : 200\text{m} = 1 \text{cm} : 0.2 \text{km} = 1 \text{cm}^2 : 0.04 \text{km}^2$

Proportion

A. Direct Proportion

This means that when y increases, x increases, and vice versa.

Use this equation: y = kx

B. Indirect Proportion

This means that when y increases, x decreases, and vice versa.

Use this equation: y=k/x

Percentage Change

% Change = $\frac{\text{new value - original value}}{\text{original value}} \times 100\%$

Percentage Profit and Loss

% Profit= $\frac{\text{selling price - cost price}}{\text{cost price}} \times 100\%$ % loss= $\frac{\text{cost price - selling price}}{\text{cost price}} \times 100\%$

Simple Interest and Compound Interest

A. Simple Interest Formula

 $I = \frac{PRT}{100}$

where I is the interest,

P is the principle sum,

R is the interest rate per annum,

T is the number of years,

$$A = P + \frac{PRT}{100} = P(1 + \frac{RT}{100})$$

where A is the total amount of money earned plus interest

B. Compound Interest Formula

$$A = P(1 + \frac{R}{100})^{T}$$
$$I = A - P = P(1 + \frac{R}{100})^{T} - P$$

C. Compound interest compounded MONTHLY

Formula: S = P(1 + r/k)ⁿ

S = final value P = principal r = interest rate (<u>expressed as decimal</u> eg 4% = 0.04) k = number of compounding periods

Note:

- if compounded monthly, number of periods = 12
- if compounded quarterly, number of periods = 4

Example:

If \$4000 is invested at an annual rate of 6.0% compounded monthly, what will be the final value of the investment after 10 years?

Since the interest is compounded monthly, there are 12 periods per year, so, k = 12. Since the investment is for 10 years, or 120 months, there are 120 investment periods, so, n = 120.

 $S = P(1 + r/k)^n$

 $S = 4000(1 + 0.06/12)^{120}$ $S = 4000(1.005)^{120}$ S = 4000(1.819396734)S = \$7277.59

Coordinate Geometry Formulas

Slope: $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{rise}}{\text{run}}$

The slopes of parallel lines are equal.

The slopes of perpendicular lines are opposite reciprocals of one another.

Midpoint formula: $(x_{mp}, y_{mp}) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Distance formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Slope-intercept form of the equation of a line: y = mx + b

Point-slope form of the equation of a line: $y - y_1 = m(x - x_1)$

Horizontal line: y = b

Vertical line: *x* = *a*

Equation of a circle: $(x - h)^2 + (y - k)^2 = r^2$

From: http://www.dummies.com/how-to/content/coordinate-geometry-formulas.html

Algebraic Manipulation

x = y + z	y = x-z
x = y-z	y = x + z
x = yz	y = x/z; $z = x/y$
x = y/z	y = xz; $z = y/x$
wx = yz	w = yz/x ; x=yz/w ; y = wx/z ; z = wx/y
$x = y^2$	y = +/-sqrt.x
x = sqrt.y	$y = x^2$
$x = y^3$	y = cuberoot.x
x = cuberoot.y	$y = x^3$

ax + bx = x(a+b)

ax + bx + kay + kby = x(a+b) + ky(a+b) = (a+b)(x+ky)

```
(a+b)^2 = a^2 + 2ab + b^2
(a-b)^2 = a^2 - 2ab + b^2
a^2 - b^2 = (a + b)(a - b)
```

Solving algebraic fractional equations

Avoid these common mistakes!

$$\frac{a}{b} \neq \frac{a+c}{b+c}$$

$$\frac{x+2}{x} \neq \frac{1+2}{1} \rightarrow \text{ cannot cancel out the x!}$$

$$\frac{a}{b} + \frac{c}{d} \neq \frac{a+c}{b+d} \rightarrow \text{ must change to same denominator!}$$

Solution of Quadratic Equations

The roots of $ax^2 + bx + c = 0$ are given by $\frac{-6 \pm \sqrt{b^2 - 4ac}}{2a}$

Completing the Square

Step 1: Take the number or coefficient before x and square it Step 2: Divide the square of the number by 4

Eg. to make $x^{2} + 5x$ into a perfect square, add $\frac{5^{2}}{4}$ Since $\frac{5^{2}}{4} = \frac{25}{4}$, the result is $x^{2} + 5x + \frac{25}{4} = (x + \frac{5}{2})^{2}$ Eg. $y = x^{2} + 6x - 11$ $y = x^{2} + 2x(6/2) + (6/2)^{2} - 11 - (6/2)^{2}$ $y = (x + 3)^{2} - 20$

Sketching Graphs of Quadratic Equations

A. eg. $y = +/-(x - h)^2 + k$

Steps:

- 1. Identify shape of curve
 - look at sign in front of(x h) to determine if it is "smiley face" or "sad face".
- 2. Find turning point
 - (h, -k)
- 3. Find y-intercept
 - sub x = 0 into the equation --> (0, y)
- 4. Line of symmetry reflect
 - x = h, reflect to get (2x, y)

B. eg. y = +/-(x - a)(x - b)

Steps:

1. Identify shape of curve

- look at the formula ax2 + bx + c.
- if a>1, it is positive; otherwise, it is negative
- 2. Find turning point
 - (a + b)/2, sub answer into equation --> (a,b)

- 3. Find y-intercept
 - sub x = 0 into the equation --> (0, y)
- 4. Line of symmetry reflect
 - x = a, reflect to get (2a, y)

Inequalities

- x < y means x is less than y
- $x \le y$ means x is less than or equal to y
- x > y means x is greater than y
- $x \ge y$ means x is greater than or equal to y

Ways to solve equalities:

1. Add or subtract numbers from each side of the inequality eg 10 - 3 < x - 3

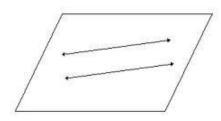
2. Multiply or divide numbers from each side of the inequality by a constant eg 10/3 < x/3

3. Multiply or divide by a negative number AND REVERSE THE INEQUALITY SIGNS eg. 10 < x becomes 10/-3 > x/-3

Example

```
Solve 3(x + 4) < 5x + 9

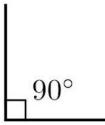
3(x + 4) < 5x + 9

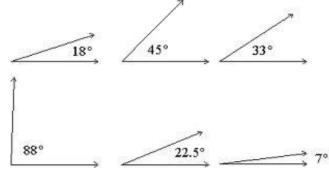

3x + 12 < 5x + 9

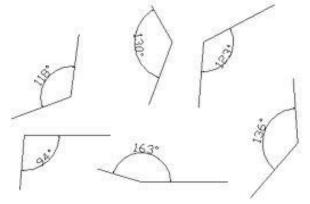
-2x < -3

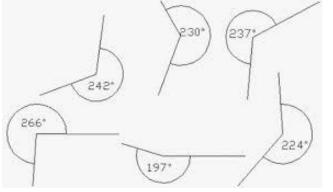
x > \frac{3}{2}
```

Geometrical terms and relationships

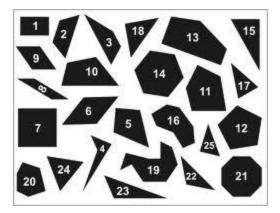

Parallel Lines


Perpendicular Lines


Right Angle


Acute Angles: angles less than 90°

Obtuse Angles: angles between 90° and 190°


Obtuse Angles: angles between 180° and 360°

Polygons

Polygon: a closed figure made by joining line segments, where each line segment intersects exactly 2 others

Irregular polygon: all its sides and all its angles are not the same Regular Polygon: all its sides and all its angles are the same

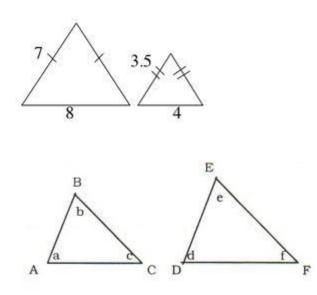
The sum of angles in a polygon with n sides, where n is 3 or more, is $180^{\circ} \times (n-2)$

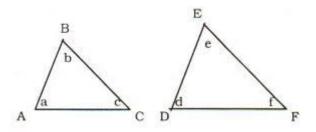
Name of Polygons

Number of sides	Polygon
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon

Triangles

Triangle	Property
Equilateral	All sides of equal length All angles are equal Each angle is 60°
Isoceles	2 sides are equal 2 corresponding angles are equal
Scalene	All sides are of unequal length
Acute	All 3 angles in the triangle are acute angles
Obtuse	1 of the 3 angles is obtuse
Right-angled	1 of the 3 angles is 90°

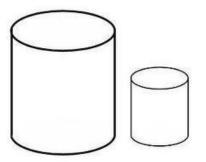

Quadrilaterals


Quadrilateral	Property
Rectangle	All sides meet at 90°
Square	All sides meet at 90 [°] All sides are of equal length
Parallelogram	2 pairs of parallel lines
Rhombus	All sides are of equal length 2 pairs of parallel lines
Trapezium	Exactly 1 pair of parallel sides

Similar Plane Figures

Figures are similar only if

- their corresponding sides are proportional their corresponding angles are equal •
- •


$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF} = k$$

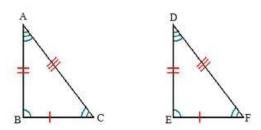
 $\frac{\text{Area of ABC}}{k^2} = k^2$ Area of DEF

k is the scale factor

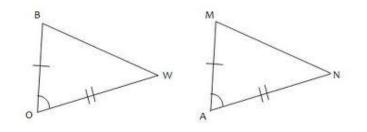
Similar Solid Figures

Solids are similar if their corresponding linear dimensions are proportional.

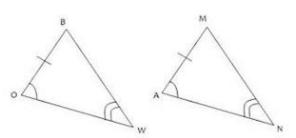
 $\frac{r_1}{r_2} = \frac{h_1}{h_2} = k \implies k \text{ is the scale factor}$ $\frac{\text{surface area of A}}{\text{surface area of B}} = k^2$ $\frac{\text{volume of A}}{\text{volume of B}} = k^3$

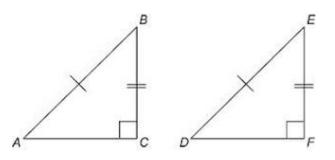

r is the radius, h is the height

Congruent Figures

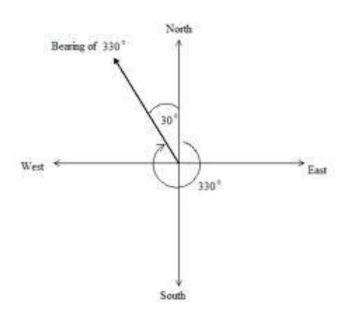

Congruent figures are exactly the same size and shape.

2 triangles are congruent if they satisfy any of the following:


a. SSS property: All 3 sides of one triangle are equal to the corresponding sides of the other triangle.


b. SAS property: 2 given sides and a given angle of one triangle are equal to the corresponding sides and angle of the other triangle.

c. AAS property: 2 given angles and a given side of one triangle are equal to the corresponding angles and side of the other triangle.



d. RHS property: The hypothenuse and a given side of a right-angled triangle are equal to the hypothenuse and the corresponding side of the other right-angled triangle.

Bearings

A bearing is an angle, measured clockwise from the north direction.

Symmetry

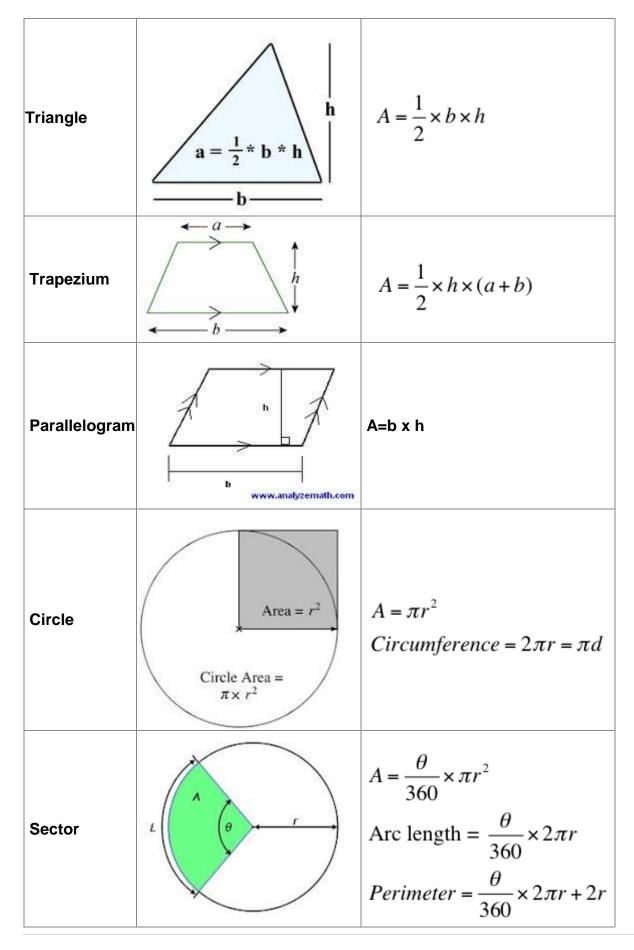
Shape	Number of lines of symmetry	Order of rotational symmetry	Centre of point symmetry
Equilateral triangle	3	3	Yes
Isosceles triangle	1	1	None
Square	4	4	Yes
Rectangle	2	2	Yes
Kite	1	1	None
Isosceles trapezium	1	1	None
Parallelogram	0	2	Yes
Rhombus	2	2	Yes
Regular pentagon	5	5	Yes
Regular hexagon	6	6	Yes

Angle properties

No.	Property	Explanation	Example
1	Angles on a straight line	 Angles on a straight line add up to 180° 2 angles are complementary is they add up to 90° 2 angles are called supplementary if they add up to 180° 	
2	Angles at a point	Angles at a point add up to 360°	
3	Vertically opposite angles	Vertically opposite angles are equal	B θ ϕ β C

4	Angles formed by parallel lines	Alternate interior angles are equal	
5	Angles formed by parallel lines	Alternate exterior angles are equal	Alternate exterior engles
6	Angles formed by parallel lines	Corresponding angles are equal	
7	Angle properties of triangles	The sum of angles in a triangle adds up to 180°	A B C C C
8	Angle properties of triangles	The sum of 2 interior opposite angles is equal to the exterior angle	A C is exterior angle B C A and B are interior angles
9	Angle properties of polygons	 sum of interior angles of an n-sided polygon = (n-2) x 180° each interior angle of a regular n-sided polygon = (n-2) x 1800 / n 	

10	Angle properties of polygons	 sum of exterior angles of an n-sided polygon is 360° each exterior angle of a regular n-sided polygon = 360° / n 	A A A
----	------------------------------------	---	-------

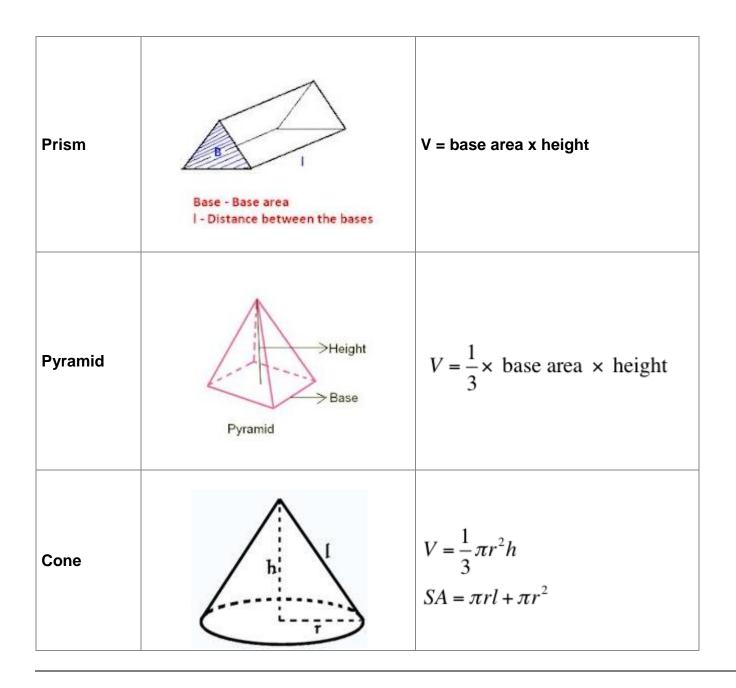

Angle Properties of Circles

$\angle a$ t Centre $\angle a = 2 \angle b$	\angle s in Same Segment $\angle a = \angle b$	\angle in Semi-Circle $\angle a = 90^{\circ}$	Radius \perp Tangent $\angle a = 90^{\circ}$
Opp. \angle s of Cyclic Quadrilateral $\angle a + \angle b = 180^{\circ}$ $\angle c + \angle d = 180^{\circ}$	\perp bisector of chord passes through centre OB \perp AC, AB = BC	Tangents from external point TP = TQ P Q	Equal chords equidistant from centre $AB = CD \leftrightarrow OP = OQ$
Alternate Segment Theorem $\angle a = \angle b, \angle c = \angle d$	Intersecting Chords Theorem $AX \cdot XB = CX \cdot XD$ A D C B	Tangent-Secant Theorem $AX \cdot BX = TX^2$ A A T X	

Mensuration

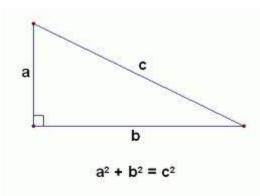
All the mensuration formulas you'll ever need can by found here... http://oscience.info/math-formulas/mensuration-formulas/ But here's a quick reference for the important ones...

Area of Figures

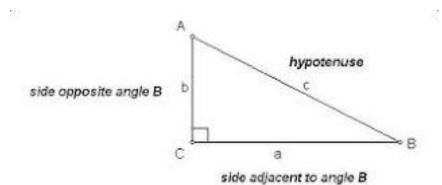


Radian Measure

- Radian is another common unit to measure angles.
- A radian is a measure of the angle subtended at the centre of a circle by an arc equal in length to the radius of the circle.
- To convert radians to degrees and vice versa, use these formulas:
 - π rad = 180°
 - 1 rad = $180^{\circ}/\pi$
 - \circ 1° = $\pi/180$ rad

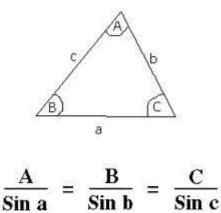

Volume of Figures

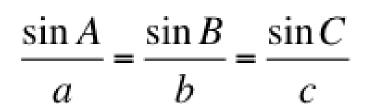
Cube		$V = a^3$ $SA = 6a^2$
Cuboid	h	V = I x b x h SA = 2bI + 2hb + 2hI
Cylinder	n r	$V = \pi r^2 h$ SA = $2\pi rh + 2\pi r^2$
Sphere		$V = \frac{4}{3}\pi r^3$ $SA = 4\pi r^2$



Trigonometry

Pythagora's theorem


Trigonometrical Ratio


$$\sin B = \frac{b}{c}$$
$$\cos B = \frac{a}{c}$$
$$\tan B = \frac{b}{a}$$

Remember: TOA CAH SOH

SINE RULE

To find an angle, can write as follows:

COSINE RULE

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$b^2 = a^2 + c^2 - 2ac \cos B$$
$$c^2 = a^2 + b^2 - 2ab \cos C$$

Area of Triangle

Area of
$$\triangle ABC$$

= $\frac{1}{2}ab\sin C$
= $\frac{1}{2}bc\sin A$
= $\frac{1}{2}ac\sin B$

Statistics

Mean

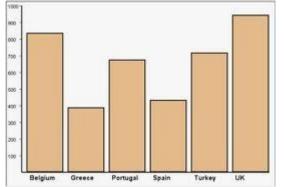
$$Mean = \overline{x} = \frac{x_1 + x_2 + \dots + x_N}{N}$$

N is the number of items

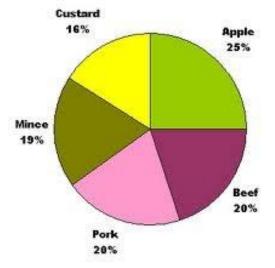
Mode

The mode is the most **frequent** value.

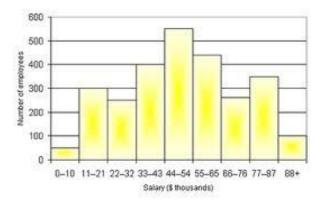
Median


The median of a group of numbers is the number in the middle, when the numbers are **in order of magnitude** (in increasing order).

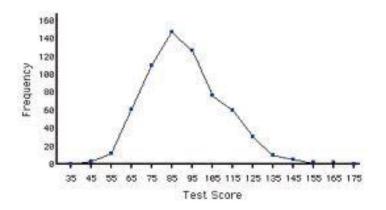
If you have n numbers in a group, the median in:

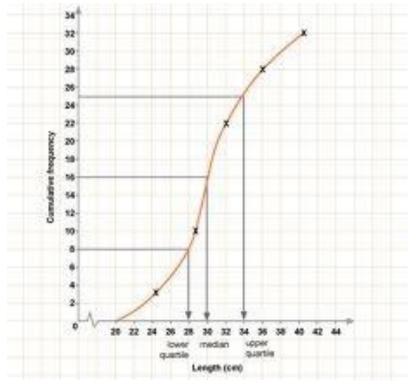

$$\frac{n+1}{2}$$
th value

Types of Chart


1. Bar chart: the heights of the bars represent the frequency. The data is **discrete**.

2. Pie chart: the angles formed by each part adds up to 360°


3. Histogram: it is a vertical bar graph with no gaps between the bars. The area of each bar is proportional to the frequency it represents.


4. Stem-and-leaf diagram: a diagram that summarises while maintaining the individual data point. The stem is a column of the unique elements of data after removing the last digit. The final digits (leaves) of each column are then placed in a row next to the appropriate column and sorted in numerical order.

Кеу	S	tem	= 1	Os.					
9	0	6							
8	3	5	7						
7	1	6	6	7	8				
8	0	2	2	4	4	5	6	8	8
5	1	1	2	2	4	5	7		
4	3	4	7	8					
3	5	7							
2									
1	6								
Key	St	em	= 1	Os.]				
9	0	6							
8	3	5	7						
7	1	6	6	7	8				
6	0	2	2	4	4	5	8	8	8
5	1	1	2	2	4	5	7		
4	3	4	7	8					
3	5	7							
2									
1	6								

5. Simple frequency distribution and frequency polygons: a plot of the cumulative frequency against the upper class boundary with the points joined by line segments.

6. Quartiles

Interquartile range = $Q_3 - Q_1$

Semi-interquartile range = $\frac{1}{2}(Q_3 - Q_1)$

Probability

Probability is the likelihood of an event happening

 $Probability = \frac{\text{the number of ways of achieving success}}{\text{the total number of possible outcomes}}$

- The probability that a certain event happening is 1
- The probability that a certain event cannot happen is 0

• The probability that a certain event not happening is 1 minus he probability that it will happen

2 events are **independent** if the outcome of one of the events does not affect the outcome of another

2 events are **dependent** if the outcome of one of the events depends on the outcome of another

- If 2 events A and B are independent of each other, then the probability of both A and B occurring is found by P(A) x P(B)
- If it is impossible for both events A and B to occur, then the probability of A or B occurring is P(A) and P(B)

Set Notation

- \in : Element of
- ∉ ∶ Not a element of
- n(a): The number of elements in a Set
- ⊂ : A proper subset
- \subseteq : A subset
- Ø or {} : Empty Set
- ε : Universal Set
- A': Complement of a Set
- U: Union of 2 Sets (dont repeat element)