

River Valley High School Integrated Programme 2023 JC2 H2 Mathematics (9758) Lecture Test 1 (Term 1)

Name	:	Index Number	:	
Class	:	Date	:	3 Feb 2023

Duration : 50 mins

List of Formulae

<u>Derivatives</u>		Integrals		
		(Arbitrary con	stants are omitted; a den	otes a positive
f(x)	f '(<i>x</i>)	constant.)		
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$	f(<i>x</i>)	$\int f(x) dx$	
$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}$	$\frac{1}{x^2 + a^2}$	$\frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right)$	
$\tan^{-1} x$	$\frac{1}{1+x^2}$	$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\left(\frac{x}{a}\right)$	(x < a)
$\operatorname{cosec} x$	$-\cos ecx \cot x$	$\frac{1}{x^2 - a^2}$	$\frac{1}{2a}\ln\left(\frac{x-a}{x+a}\right)$	(x > a)
See		$\frac{1}{a^2 - x^2}$	$\frac{1}{2a}\ln\left(\frac{a+x}{a-x}\right)$	(x < a)
		tan x	$\ln(\sec x)$	$(x < \frac{1}{2}\pi)$
		$\cot x$	$\ln(\sin x)$	$(0 < x < \pi)$
		cosec x	$-\ln(\operatorname{cosec} x + \operatorname{cot} x)$	$(0 < x < \pi)$
		sec x	$\ln(\sec x + \tan x)$	$(x < \frac{1}{2}\pi)$

[Answer all the questions on writing papers. Up to 1 mark will be deducted for poor presentation.]

1 (i) Find
$$\int xe^x dx$$
. [2]

(ii) Find
$$\int \frac{1}{1-4x^2} dx$$
. [2]

(iii) Hence find the general solution to the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x\mathrm{e}^x - 4xy^2\mathrm{e}^x\,.$$
[2]

- 2 The curve C has equation $y = \frac{x^{\frac{3}{2}}}{\left(4x^2+9\right)^{\frac{3}{4}}}$.
 - (i) The finite region bounded by the curve *C*, the line $x = \frac{3\sqrt{3}}{2}$ and the *x*-axis is rotated through 2π radians about the *x*-axis. Find the volume of the solid obtained, giving your answer correct to 3 significant figures [2]

(ii) The finite region bounded by the curve *C*, the lines $x = \frac{3\sqrt{3}}{2}$, y = 1 and the *y*-axis is rotated through 2π radians about the *x*-axis. Find the volume of the solid obtained, giving your answer correct to 3 significant figures. [3]

3 A 1500-litre tank contains 600 litres of water with 5 kg of sugar dissolved in it initially. Sugar solution of concentration $\frac{1}{5}$ kg per litre enters the tank at a constant rate of 9 litres per hour. A well-mixed solution leaves the tank at a constant rate of 6 litres per hour.

- (i) Denoting the amount of sugar in the tank as Q kg, show that $\frac{dQ}{dt} + \frac{2Q}{200+t} = \frac{9}{5}$. [2]
- (ii) Using the substitution $u = (200 + t)^2 Q$, show that the differential equation reduces to

$$\frac{du}{dt} = \frac{9}{5} \left(200 + t\right)^2.$$
 [3]

(iii) Hence, find the amount of sugar in the tank at the time when it is full. [6]

4 Alice has 3 red, 3 blue and 3 yellow dominoes.

(a) Find the number of ways to arrange the dominoes in a line if

(i)	there are no restrictions,	[2]
(ii)	the red dominoes cannot be all together.	[3]

to or separated.

~ The End ~

		what is wrong with the following?
		$bot \mu = e^{x} \frac{dy}{dx} = x$
RVHS	2023 JC2 H2 Lecture Test 1	$\frac{\partial u}{\partial x} = e^{x}$ $V = \pm x^{2}$
		$\int x e^{x} dx = (e^{x})(\frac{1}{2}x^{2}) - \int (\frac{1}{2}x^{2})(e^{x}) dx$
1	Solution [10] Integration Techniques	· You got to realize the integral
(a)	$\int xe^{x} dx = xe^{x} - \int e^{x} dx$ $= xe^{x} - e^{x} + c$	$u = x \frac{dv}{dx} = e^{x}$ How do we determine the role of U and $\frac{dv}{\partial x}$? L - lnx increasing I - tan', sin', cos' increasing I - tan', sin', cos' I - tan', sin', cos
(b)	$\int \frac{1}{1-4x^2} dx \text{Note that from MF2C} \\ \int \frac{1}{1-4x^2} dx \text{Note that from MF2C} \\ \int \frac{1}{a^2-x^2} dx = \frac{1}{2a} \ln \left \frac{a+2}{a^2} \right \\ = \frac{1}{2} \int \frac{1}{1-(2x)^2} dx \int \frac{1}{a^2-f^2} \int \frac{1}{a^2-f^2} \int \frac{1}{f^2} dx \\ = \frac{1}{2} \left[\frac{1}{2(1)} \ln \left \frac{1+2x}{1-2x} \right \right] + c \text{In this case,} \\ = \frac{1}{4} \ln \left \frac{1+2x}{1-2x} \right + c \int \frac{1}{a^2-x^2} dx = \frac{1}{2a} \ln \left \frac{a+x}{a-x} \right \\ \text{Alternatively} \text{In eacual representation of } \\ \int \frac{1}{1-4x^2} dx \text{In the observe the absolute sign.} \\ \end{bmatrix}$	$\frac{d}{dt} = \frac{1}{dt} \ln \left \frac{a+f}{a-f} \right + c$ $\frac{d}{dt} \ln \left \frac{a+f}{a-f} \right $ $\frac{d}{dt} \ln \left \frac{d}{dt} + \frac{f}{a-f} \right $
(iii)	$= \int \frac{1}{(1-2x)(1+2x)} dx$ $= \int \frac{1/2}{1+2x} + \frac{1/2}{1-2x} dx$ Absolute value of $= \frac{1}{2} \left[\frac{1}{2} \ln 1+2x - \frac{1}{2} \ln 1-2x \right] + c$ $= \frac{1}{4} \ln \left \frac{1+2x}{1-2x} \right + c$ $\frac{dy}{dx} = xe^x - 4xy^2 e^x = xe^x (1-4y^2)$ $\int \frac{1}{1-4y^2} \frac{dy}{dx} dx = \int xe^x dx$ $\int \frac{1}{1-4y^2} \frac{dy}{dx} = \int xe^x dx$ $\int \frac{1}{1-4y^2} x ^2 = xe^x - e^x + c$	logarithm x terms, so that $(x terms)are separated.(y \text{ terms}) to the same side as \frac{dy}{dx}h side w \cdot r \cdot t x.$
	$\left \frac{-4}{4} \right \frac{-2y}{1-2y} = xe^{-e^{-z}} + c^{-e^{-z}}$	

Some the is a proving
$$\Omega t_{n}$$

(i) $\frac{dQ}{dt} = \operatorname{rate} \operatorname{in} - \operatorname{rate} \operatorname{out}$
 $= (9) \left(\frac{1}{5}\right) - (6) \left(\frac{Q}{600 + 31}\right)$ The pulliphone of $(9) \circ 6h(\frac{1}{2})$
 $= (9) \left(\frac{1}{5}\right) - (6) \left(\frac{Q}{600 + 31}\right)$ Some the reading labors $1 \otimes 20^{-1}$ and $1 \otimes 20^{$

(iii)	$du = 9(200 + t)^2$
	$\frac{1}{\mathrm{d}t} = \frac{1}{5} \left(200 + t \right)$
	$u = \frac{9}{5} \frac{\left(200 + t\right)^3}{3} + c$
	$=\frac{3}{5}(200+t)^3+c$
	$(200+t)^2 Q = \frac{3}{5} (200+t)^3 + c$
	$Q = \frac{3}{5} (200+t) + \frac{c}{(200+t)^2}$
	When $t = 0, Q = 5$.
	$5 = \frac{3}{5} \left(200\right) + \frac{c}{\left(200\right)^2}$
	c = -4600000
	$Q = \frac{3}{5} (200+t) - \frac{4600000}{(200+t)^2}$
	Ant that that the in per hour = 1500-600
	Tank is full when $t = 300^{\circ}$
	$Q = \frac{3}{5} (500) - \frac{4600000}{(500)^2} = 281.6 \text{ kg}$

Alice has 3 red, 3 blue and 3 yellow dominoes. Solution [8] P & C 4 (a) Find the number of ways to arrange the dominoes in a line if Number of ways = $\frac{9!}{3!3!3!} = 1680$ (a) (i) there are no restrictions, (i) (ii) the red dominoes cannot be all together. (ii) Number of ways = $1680 - \frac{7!}{3!3!} = 1540$, Common Mistake: Cannot all together is generally not just all separated. Reference alternative solution Alternatively, Number of ways = $\frac{6!}{3!3!} \times \begin{pmatrix} 7 \\ 3 \end{pmatrix} = 700$, Case2: 2 red dominoes are together with the other one separated from the group of 2. Total number of ways = 700 + 840 = 1540

Question 4