Serangoon Garden Secondary School 2021 Sec 4E/5NA Prelims P1 Suggested Mark Scheme

Qn	Solution	Mark Scheme
1(a)	$1.98^2 \times \sqrt[3]{31.2}$	B 1
	$\frac{1.98^2 \times \sqrt[3]{31.2}}{3.41 - 2.2} = 10.199$	
(b)	10.199 = 10.2 (3 s.f)	B1
	Total for Q1	2 m
2		
	$US\$5.40 = S\5.40×1.33	
	US\$5.40 = S\$7.182	
	7.182	
	Cost of 1 litre of petrol in Los Angeles in terms of S \$ = S \$ 3.79	
	7.182	
	= S\$ 3.79	
	= S\$ 1.894	N // 1
	= S\$1.89 <s\$1.98 Hence, petrol in Los Angeles is cheaper than Singapore.</s\$1.98 	M1 A1
	Total for Q2	2 m
	70001101 22	
2(a)	$\sin \angle ABY = \frac{4}{5}$	B1
3(a)	$\sin \angle ABI = \frac{1}{5}$	
		B 1
(b)	$\cos \angle XAB = -\frac{4}{5}$	
	Total for Q3	2 m
4	Amount of energy produced in $2020 = 0.85 \times 510 \times 10^9$ watts	M1
	$=433.5 \times 10^9 \text{ watts}$	
	$= 4.335 \times 10^{2} \times 10^{9} \text{ watts}$	
		A1
	$= 4.335 \times 10^{11} \text{ watts}$	
	(exact answer and should not be rounded off) Total for Q4	2 m
	10.01101 Q4	<u>≠</u> 111
5	$\angle OAP = \angle OPA \ (\Delta OAP \text{ is an isosceles triangle as } OA = OP)$	M1
	$\angle OAP = \angle BAP (\angle OAB \text{ is bisected})$	
	Hence, $\angle OPA = \angle BAP$.	
	Since $\angle OPA = \angle BAP$, OP is parallel to AB .	A1
	Total for Q5	2 m
6	Let the largest angle be $\angle p$.	

	$\cos \angle p = \frac{1^2 + 2.5^2 - 3^2}{2(1)(2.5)}$	M2
	$\angle p = \cos^{-1}(-0.35)$	
	$\angle p = 110.48^{\circ}$	
	$\angle p = 110.48$	A1
	Total for Q6	3 m
7(a)	1: 50 000.	
	1 cm: 50 000 cm	
	1 cm: 0.5 km	
	12 cm: 6 km	
	The actual distance between the two towns is 6 km.	B1
(b)	1 cm: 0.5 km	
	$1 \text{ cm}^2 : 0.25 \text{ km}^2$	M1
	72 cm ² : 18 km ²	
	The area of the theme park on the map is 72 cm ² .	A1
	Total for Q7	3 m
8(a)	240 - (-380) = 620 m	B1
(b)	$\frac{-380 + 240}{3} = -70$	
	Distance the diver is below the sea level = 2	
	Distance the diver is from the sea bed = $565 - 70 = 495$	B1
	Total for Q8	2 m
9(a)	$p = 2 \times 7 = 14$	B1
(b)(i)	$LCM = 2^4 \times 3 \times 5^2 \times 7^{4k}$	B1
(**)		D1
(ii)	\mathcal{V} is a perfect square as the power of each of its factor is even for all	B1
	values of k.	
	Total for Q9	3 m
10(a)	$11 - 6x + x^{2} = x^{2} - 6x + \left(\frac{-6}{2}\right)^{2} + 11 - \left(\frac{-6}{2}\right)^{2}$	M1
	$=(x-3)^2+2$	A1
(b)	The minimum point is $(3, 2)$	B 1
i e	The infimitum point is	

(c)	The graph will not cut the x -axis as the minimum point is above	
	the x -axis.	B1
	Total for Q10	4 m
11(a)	Initial amount of water = 9 litres	B1
(b)	Gradient = $\frac{24-9}{50-0} = 0.3$ or $\frac{3}{10}$	M1
	Equation is $V = 9 + 0.3t$	A1
	Total for Q11	3 m
12(a)	Let the original price of the washing machine be \$ x	
	$0.7 \times 0.7 \times x = \1274	M1
	$x = \frac{1274}{0.7 \times 0.7}$	
	x = 2600 The original price of the washing machine is \$2600.	A1
		AI .
(b)	Discount (%) = $\frac{2600 - 1274}{2600} \times 100\%$	M1
	$=\frac{1326}{2600} \times 100\%$	
	= 51%	
	Hence, Jamie is incorrect as he is given only 51% discount and not 60% discount.	A1
	Total for Q12	4 m
13(a)(i	$\mathcal{E} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$	
	$A = \{2, 3, 5, 7, 11\}$	
	$B = \{ \text{integers } x : 2x + 3 > 5 \}$	
	$B = \{x > 1\} = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$	
	8 4, 6, 8, 9, 10 2, 3, 5, 7, 11	B1 – Set B proper subset of set A B1 – Correct placement of

	0, 1	the members of each set
		or each set
() (**)	•	D1
(a)(ii)	$n(A \cap B) = 5$	B1
(b)	A COMPANY OF THE PROPERTY OF T	B1
	Total for Q13	4 m
14(a)	4a(3-2b) + 5ba + a = 12a - 8ab + 5ba + a	M1
	= 13a - 3ab or $13a - 3ba$	A1
(b)	4fx - 4gy + gx - 16fy = 4fx - 16fy + gx - 4gy	
	=4f(x-4y)+g(x-4y)	M1
	= (x-4y)(4f+g)	A1
	OR	
	4fx - 4gy + gx - 16fy = 4fx - 16fy - 4gy + gx	
	=4f(x-4y)-g(4y-x)	[M1]
	=4f(x-4y)+g(x-4y)	
	= (x-4y)(4f+g)	[A1]
	Total for Q14	4 m
15(a)	$(x+3)(3x+2)-(x+3)^2=0$	
	(x+3)[(3x+2)-(x+3)]=0	M1

	(x+3)(2x-1)=0	
	$x = -3 \text{or} x = \frac{1}{2}$	A1
	OR $(x+3)(3x+2)-(x+3)^2=0$	
	$3x^2 + 11x + 6 - (x^2 + 6x + 9) = 0$	
	$2x^2 + 5x - 3 = 0$	[M1]
	(x+3)(2x-1)=0	
	$x = -3 \text{or} x = \frac{1}{2}$	[A1]
(b)	$2 - \frac{3}{3} = 6$	
	$\frac{3}{x} = -4 \qquad OR \qquad -\frac{3}{x} = 4$	M1
	-4x = 3	
	$x = -\frac{3}{4}$	A1
	Total for Q15	4 m
16(a)		
10(11)		
	<u> </u>	B 1
(b)(i)		B1
(ii)	1.5 <i>y</i>	
	$P = \frac{\kappa}{r^2}$	
	$P_1 = \frac{k}{r_1^2}$	
	$54 = \frac{k}{y^2}$	

	$k = 54y^2$	M1
	$k = 54y^2$ $P = \frac{54y^2}{r^2}$	
	r^2 $54v^2$	
	When $r_2 = 1.5y$, $P_2 = \frac{r_2^2}{r_2^2}$	
	When $r_2 = 1.5y$, $P_2 = \frac{54y^2}{r_2^2}$ $P_2 = \frac{54y^2}{(1.5y)^2}$	
	$P_2 = 24$	
	The new pressure is 24 N/cm ² . Total for Q16	A1 4 m
17(-)		
17(a)	x = 85 - 22 = 63	D1
	$\therefore a = 3$	B1
	$74.5 = \frac{73 + y}{2}$	
	y = 76	B1
	∴ b = 6	D 1
(b)	$Q_3 = \frac{79 + 82}{2} = 80.5$	
	$Q_3 = \frac{79 + 82}{2} = 80.5$ $Q_1 = \frac{68 + 69}{2} = 68.5$	
	Interquartile range = 80.5 - 68.5 = 12	B1
	Total for Q17	3 m
18(a)	Median speed = 62 km/h	B1
(b)	$\frac{16}{120} = \frac{2}{15}$	B1
(c)(i)	g = 8	B1
(ii)	Standard deviation = 15.216 = 15.2 km/h	B1
	Total for Q18	4 m
19(a)	$8000 \left(1 + \frac{2}{100}\right)^{6}$ Total amount to be received by Keith = \$	M1
	Interest earned by Keith = $\$$ $8000 \left(1 + \frac{2}{100}\right)^6$ - $\$8000$	
	= \$1009.299	

	= \$1009.30 (correct to 2 d.p)	A1
19(b)(i)	Method 1	
	15% of annual pay = \$936 + 12% of annual pay	
	3% of annual pay = \$936	M1
	100% of annual pay = \$31200	
	Linda's monthly pay = $\frac{\$31200}{12}$ = \\$2600	A1
	Method 2	
	Let x be Linda's current annual pay.	
	$\frac{15}{100} \times x = 936 + \left(\frac{12}{100} \times x\right)$	[M1]
	0.15x = 936 + 0.12x	
	0.03x = 936	
	x = 31200	
	$\frac{\$31200}{12} = \2600 Linda's monthly pay = $\frac{\$31200}{12} = \2600	[A1]
(b)(ii)	Pamela's pay is > \$2600 whereas Hafiz's pay is < \$2600.	B1
	(OR Pamela's pay is greater than Linda's pay and Hafiz's pay is lesser than Linda's pay. / The \$936 for Hafiz is more than 3% of his salary, whereas for Pamela, the \$936 is less than 3% of her salary.)	[B1]
	Total for Q19	5 m
20(a)	$\angle AOB = \frac{2\pi}{5}$ or 0.4π radian	B1
(b)	Method 1 Area of $\triangle AOB = \frac{1}{2}(6)(6)\sin\frac{2\pi}{5}$	M1
	Area of $\triangle AOB = 2$ 5 Area of circle = $\pi r^2 = \pi (6)^2$	M1
	Area of shaded region = $\frac{\pi (6)^2 - 5 \times \frac{1}{2} (6)(6) \sin \frac{2\pi}{5}}{5}$	M1
	$= 27.502 \text{ cm}^2 = 27.5 \text{ cm}^2$	A1
	Method 2	

Area of sector $AOB = \frac{1}{2}(6)(6)\frac{2\pi}{5}$ [M1] Area of $\triangle AOB = \frac{1}{2}(6)(6)\sin\frac{2\pi}{5}$ [M1] Area of $\triangle AOB = \frac{1}{2}(6)(6)\sin\frac{2\pi}{5}$ [M1] Area of shaded region = $5\left[\frac{1}{2}(6)(6)\frac{2\pi}{5}-\frac{1}{2}(6)(6)\sin\frac{2\pi}{5}\right]$ [M1] Total for Q20 5 m 21(a)(i) $\frac{Vol. of \ water}{Vol. of \ cup} = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$ 8 units 3 240 seconds 1 units 3 30 seconds 1 units 3 30 seconds B1 (a)(ii) $\frac{I_{\text{diswer}}}{I_{\text{matter}}(\text{cm})} = \frac{1}{2}I_{\text{matter}} = \frac{6}{\sin 20^{\circ}}$ M1 Surface area in contact with water = πrl $\frac{\pi \times 6 \times \frac{6}{\sin 20^{\circ}}}{I_{\text{matter}}(\text{matter})} = \frac{1}{5}I_{\text{matter}} = \frac{1}{5}I_{matt$		Area of sector $AOB = \frac{1}{2}(6)(6)\frac{2\pi}{5}$	[M1]
Area of shaded region = $5\left[\frac{1}{2}(6)(6)\frac{2\pi}{5} - \frac{1}{2}(6)(6)\sin\frac{2\pi}{5}\right]$ [A1] $= 27.5 \text{ cm}^2$ [A1] Total for Q20 5 m $= 21(a)(i)$ $\frac{Vol. of \ water}{Vol. of \ cup} = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$ 8 units ³ - 240 seconds 1 units ³ - 30 seconds 1 units ³ - 30 seconds B1 (a)(ii) Answer $= \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{8} \frac$		Area of $\triangle AOB = \frac{1}{2}(6)(6)\sin\frac{2\pi}{5}$	[M1]
		$5\left \frac{1}{2}(6)(6)\frac{2\pi}{5}-\frac{1}{2}(6)(6)\sin\frac{2\pi}{5}\right $	[M1]
21(a)(i) $\frac{Vol. of \ water}{Vol. of \ cup} = \left(\frac{1}{2}\right)^{3} = \frac{1}{8}$ $8 \ units^{3} - 240 \ seconds$ $1 \ units^{3} - 30 \ seconds$ $1 \ units^{3} - 30 \ seconds$ B1 (a)(ii) $\frac{h_{iswer}}{v_{water} \ (rm)} = \frac{1}{2}h$ $\frac{1}{2}h$ $\frac{1}{2$		$= 27.5 \text{ cm}^2$	[A1]
21(a)(i) $\frac{Vol. of \ water}{Vol. of \ cup} = \left(\frac{1}{2}\right)^{3} = \frac{1}{8}$ $8 \ units^{3} - 240 \ seconds$ $1 \ units^{3} - 30 \ seconds$ $B1$ (a)(ii) $\frac{I}{I \ water \ (cm)} = \frac{1}{2}h$ $\frac{1}{2}h$			
Sunits $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{9}$ $\frac{1}{$			
1 units ³ – 30 seconds B1	21(a)(i)		
(a)(ii) Answer Height of water (cm) $\frac{1}{2}h$ $$			D4
Height of water (cm) $\frac{1}{2}h$ B1 for the correct shape of graph and passing through(0, 0), (30, 0.5h) and (240, h) (b) Let the slant height be $\frac{I}{I}$ cm $\sin 20^\circ = \frac{6}{I}$, $I = \frac{6}{\sin 20^\circ}$ Surface area in contact with water = πrI $\frac{\pi \times 6 \times \frac{6}{\sin 20^\circ}}{= 330.67 \text{ cm}^2 = 331 \text{ cm}^2}$ A1 Total for Q21 $\frac{1}{1}$ 5 m 22(a) $\angle TSU = \angle TPQ$ (corresponding angles) $\angle TUS = \angle TQP$ (corresponding angles) $\angle STU = \angle PTQ$ (common angle)		1 units ³ – 30 seconds	BI
Surface area in contact with water = πrl $= \frac{\pi \times 6 \times \frac{6}{\sin 20^{\circ}}}{= 330.67 \text{ cm}^{2} = 331 \text{ cm}^{2}}$ M1 $= 330.67 \text{ cm}^{2} = 331 \text{ cm}^{2}$ A1 Total for Q21 5 m $= 22(a)$ $= 2TVU = 2TVQ \text{ (corresponding angles)}$ $= 2TUS = 2TQV \text{ (corresponding angles)}$ $= 2TUS = 2TQV \text{ (common angle)}$		Height of water (cm) $\frac{1}{2}h$ Time (seconds) B1 for the correct shape of graph and passing through(0, 0), (30, 0.5h) and Let the slant height be f cm	
Surface area in contact with water = πrl $= \frac{\pi \times 6 \times \frac{6}{\sin 20^{\circ}}}{= 330.67 \text{ cm}^{2} = 331 \text{ cm}^{2}}$ M1 $= 330.67 \text{ cm}^{2} = 331 \text{ cm}^{2}$ A1 Total for Q21 5 m $= 22(a)$ $= 2TVU = 2TVQ \text{ (corresponding angles)}$ $= 2TUS = 2TQV \text{ (corresponding angles)}$ $= 2TUS = 2TQV \text{ (common angle)}$		$\sin 20^\circ = \frac{6}{l} \qquad l = \frac{6}{1000}$	M1
$\frac{\pi \times 6 \times \frac{6}{\sin 20^{\circ}}}{= 330.67 \text{ cm}^2 = 331 \text{ cm}^2} \qquad \frac{\text{A1}}{\text{5 m}}$ $22(a) \qquad \angle TSU = \angle TPQ \text{ (corresponding angles)}$ $\angle TUS = \angle TQP \text{ (corresponding angles)}$ $\angle STU = \angle PTQ \text{ (common angle)}$		t , sin 20°	
$\frac{\pi \times 6 \times \frac{6}{\sin 20^{\circ}}}{= 330.67 \text{ cm}^2 = 331 \text{ cm}^2} \qquad \frac{\text{A1}}{\text{5 m}}$ $22(a) \qquad \angle TSU = \angle TPQ \text{ (corresponding angles)}$ $\angle TUS = \angle TQP \text{ (corresponding angles)}$ $\angle STU = \angle PTQ \text{ (common angle)}$		Surface area in contact with water = πrl	
22(a) $\angle TSU = \angle TPQ$ (corresponding angles) $\angle TUS = \angle TQP$ (corresponding angles) $\angle STU = \angle PTQ$ (common angle) B2 (any of the three reasons)		$= \frac{\pi \times 6 \times \frac{6}{\sin 20^{\circ}}}{\sin 20^{\circ}}$	M1
22(a) $\angle TSU = \angle TPQ$ (corresponding angles) $\angle TUS = \angle TQP$ (corresponding angles) $\angle STU = \angle PTQ$ (common angle) B2 (any of the three reasons)			
the three reasons) $ \angle TUS = \angle TQP \text{ (corresponding angles)} $ $ \angle STU = \angle PTQ \text{ (common angle)} $		Total for Q21	5 m
	22(a)	$\angle TSU = \angle TPO$	
		$\angle TUS = \angle TQP$ (corresponding angles)	
		$\angle TUS = \angle TQP$ (corresponding angles)	

(b)	ΔUVR		B1
(c)(i)	area of ΔTSU : area of $\Delta TPQ = \left(\frac{2}{5}\right)^2 = \frac{4}{25} = 4:25$		B1
(ii)	area of ΔTSU : area of quad $SUQP = 4:21$		
	area of quadrilateral $SUQP = \frac{21}{4} \times 8$ =42 cm ²		B1
		Total for Q22	5 m