

EJC H3 Physics 2020 Preliminary Examination Marks Scheme and Solution

Que	stion	Solution	Marks
1	(a)	Change in displacement of B relative to A = $\left \begin{pmatrix} 30000 \sin 30^\circ + 20000 \sin 10^\circ \\ 30000 \cos 30^\circ - 20000 \cos 10^\circ \end{pmatrix} \right $ = 19512 m OR Using cosine rule, $B_1B_2 = \sqrt{30^2 + 20^2 - 2(20)(30)\cos(100^\circ - 60^\circ)} = 19.512 \text{ km}$ $speed = \frac{s}{t} = \frac{19512}{3600} = 5.42 \text{ m s}^{-1}$	M1 (M1) A1
	(b)	Speed $= \frac{1}{t} = \frac{1}{3600} = 5.42 \text{ m/s}^{-1}$ 30 km 20 km 10 km 10 km θ θ θ θ θ θ θ θ	
		$B_1 F = 30 \cos 41.2^\circ = 22.5685 \ km$	C1
		<i>Time taken</i> = $\frac{22568.5}{5.42}$ = 4163.9s = 69 min 24 s from 12 pm	C1
		Time they are the closest is 1309HR	A1

(c)	$\angle B_1 AF = 180^\circ - 90^\circ - 41.2^\circ = 48.8^\circ$ Bearing = 60° + 48.8° = 108.8°	A1
	speed = $\frac{AF}{time \ taken} = \frac{30000 \sin 41.2^{\circ}}{9 \times 60} = 36.6 \ m \ s^{-1}$	A1
	Also accept if student use time taken as $9 \times 60 + 24 = 564 s$ and gets speed as 35.0 m s ⁻¹ .	

Que	estion		Solution	Marks
2	(a)	(i)	The expression for the moment of inertia of a sphere can be developed by summing the moment of infinitely thin disks about the z axis. $dI = \frac{1}{2}y^2 dm = \frac{1}{2}y^2 \rho dV = \frac{1}{2}y^2 \rho \pi y^2 dz$ $I_{CM} = \frac{1}{2}\rho \pi \int_{-R}^{R} y^4 dz$ $= \frac{1}{2}\rho \pi \int_{-R}^{R} (R^2 - z^2)^2 dz$ $= \frac{8}{15}\rho \pi R^5$ $= \frac{2}{5}MR^2$ Accept summing up spherical hollow shells.	
				B1
			Clearly defined variables Correct definition of <i>dI</i>	B1
			Correct algebra leading to final expression	B1
		(ii)	Using parallel axis theorem $I_P = I_{CM} + Md^2$	M1
			$I_P = \frac{2}{5}MR^2 + M(L+R)^2$	A1
	(b)	(i)	$\tau = -Mg(L+R)\sin\theta$ (no marks if negative sign is omitted.)	A1
		(ii)	Using Newton's 2 nd law for rotation: $\tau = I\alpha$ $-Mg(L+R)\sin\theta = \left[\frac{2}{5}MR^{2} + M(L^{2} + 2LR + R^{2})\right]\alpha$ $\alpha = \frac{Mg(L+R)\sin\theta}{M\left(\frac{2}{5}R^{2} + R^{2} + 2LR + L^{2}\right)}$ $= -\frac{g(L+R)\sin\theta}{\left(\frac{7}{5}R^{2} + L^{2} + 2LR\right)}$	B1 A1

9814(2020) H3 Physics Preliminary Examination (MS) and solution

	(iii)	θ must be small such at $\sin \theta \approx \theta$	M1
		$\alpha = -\frac{g(L+R)}{\left(\frac{7}{5}R^2 + L^2 + 2LR\right)}\sin\theta$	
		$\left(\frac{7}{5}R^2 + L^2 + 2LR\right)$	
		$\alpha = -\frac{g(L+R)}{\left(\frac{7}{5}R^2 + L^2 + 2LR\right)}\theta$	
		$\left(\frac{7}{5}R^2 + L^2 + 2LR\right)$	
		$\omega^2 = \frac{g(L+R)}{-}$	
		$\omega^{2} = \frac{g(L+R)}{\left(\frac{7}{5}R^{2} + L^{2} + 2LR\right)}$	
		$\frac{7}{5}R^2 + L^2 + 2LR$	
		$T = 2\pi \sqrt{\frac{\frac{7}{5}R^2 + L^2 + 2LR}{g(L+R)}}$	
		$=2\pi\sqrt{\frac{\frac{7}{5}(0.30)^2 + 1^2 + 2(0.30)(1)}{9.81(1+0.30)}}$	M1
		-2π 9.81(1 + 0.30)	A1
		= 2.31 s	

Que	stion	Solution	Marks
3	(a)	Using Gauss Law, $\oint \vec{E} \cdot d\vec{A} = \frac{q_{enclosed}}{\epsilon_0}$	мо
		Using a sylindrical Coupsian surface with $x < D$	
		$E(2\pi rL) = \frac{\rho \pi r^2 L}{\Gamma}$	
		$E(2\pi rL) = \frac{\rho \pi r^2 L}{\varepsilon_0}$ $E = \frac{\rho r}{2\varepsilon_0}$	A1
	(b)	Osing Gauss Law,	
		$\oint \vec{E} \cdot d\vec{A} = \frac{q_{enclosed}}{\varepsilon_0}$	
		Using a sylindrical Causaian surface, with $P < \pi$	
		$E(2\pi rL) = \frac{\rho \pi R^2 L}{\Gamma}$	M1
		e_0	
		$E(2\pi rL) = \frac{\rho \pi R^2 L}{\varepsilon_0}$ $E = \frac{\rho R^2}{2\varepsilon_0 r}$	A1
	(c)	E↑	
		$\frac{\rho R}{2\varepsilon_0} - \frac{\rho R}{\rho}$ $\frac{\rho R}{\rho} - \frac{\rho R}{\rho}$ $\frac{\rho R}{\rho}$ $\frac{\rho R}{\rho} - \frac{\rho R}{\rho}$ $\frac{\rho R}{\rho}$ \frac	B1 B1
	(d)	Let \vec{r} locate a point within the hole, relative to the axis of the cylinder and let \vec{r}' locate this point relative to the axis of the hole.	
		Let \vec{b} locate the axis of the hole relative to the axis of the cylinder.	
		As shown in diagram, $\vec{r'} = \vec{r} - \vec{b}$	
		$\vec{E}_{off-axis} = \frac{\rho \vec{r'}}{2\varepsilon_0} = \frac{\rho(\vec{r} - \vec{b})}{2\varepsilon_0} $	
		$\vec{E}_{hole} = \vec{E}_{cylinder} - \vec{E}_{off-axis}$	
		$=\frac{\rho \vec{r}}{2\varepsilon_0} - \frac{\rho (\vec{r} - \vec{b})}{2\varepsilon_0} = \frac{\rho \vec{b}}{2\varepsilon_0}$	B1
		$2\varepsilon_0$ $2\varepsilon_0$ $2\varepsilon_0$ Direction: Along the direction from centre of cylinder to centre of hole.	
	(e)	Cylindrical Gaussian surface about central axis encloses no charge	B1 M1
	(0)	(based on equation in (d), as $\vec{b} = \vec{0}$)	(M1)
		Electric field strength is zero.	A1

Question	Solution	Marks
4	Using $v = L \frac{di}{dt}$	B1
	Instantaneous power supplied to initiate the current in the inductor is $P = iv = Li \frac{di}{dt}$	M1
	$Total energy stored = \int_0^{t_f} P dt$	
	$= \int_{0}^{t_{f}} Li \frac{di}{dt} dt$ $= \int_{0}^{I_{f}} Li di$ $= \left[\frac{1}{2}Li^{2}\right]_{0}^{I_{f}}$ $= \frac{1}{2}LI_{f}^{2}$	
	$=\int_{0}^{I_{f}}Lidi$	
	$= \left[\frac{1}{2}Li^2\right]_0^{I_f}$	C1
	$=\frac{1}{2}LI_{f}^{2}$	A1

Que	stion		Solution	Marks
5	(a)		The total energy of a moving satellite m under the influence of the gravitational field due to the Earth of mass M is given by:	
			TE = KE + GPE = $\frac{1}{2}mv^2 - \frac{GMm}{r}$	
			Since the satellite have an ellipsoidal orbit,	
			$v^2 = v_{tangent}^2 + v_{radial}^2$	B1
			Since satellite is in a central force field $\vec{\tau} = \vec{r} \times \vec{F} = \vec{0}$ and resulted in $L = mrv_t$	B1
			Therefore, sub in the about equations and simplifying, $TE = \frac{1}{2}mv_t^2 + \frac{1}{2}mv_r^2 - \frac{GMm}{r}$	
			$=\frac{1}{2}mv_{r}^{2}+\frac{L^{2}}{2mr^{2}}-\frac{GMm}{r}$	A0
	(b)	(i)	Kepler's first law states that all planets move in elliptical orbits with the Sun at one focus of the ellipse.	B1
		(ii)	At turning points, $v_r = 0$	M1
			$E = \frac{L^2}{2mr^2} - \frac{GMm}{r}$ $Er^2 + GMmr - \frac{L^2}{2m} = 0$ $r^2 + \frac{GMm}{E}r - \frac{L^2}{2mE} = 0$ By comparing coefficients,	
			$A = \frac{GMm}{E}$	A1
			$B = -\frac{L^2}{2mE}$	A1
		(iii)	Since the roots of the equation in (b)(ii) are r_a and r_p , $(r - r_p)(r - r_a) = 0 \Rightarrow r^2 - (r_p + r_a)r + r_ar_p = 0$	C1
			Comparing coefficients, $-\frac{GMm}{E} = (r_a + r_p)$ $E = -\frac{GMm}{(r_a + r_p)}$ 11.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	C1
			$(r_a + r_p)$ (6.67 × 10 ⁻¹¹)(5.97 × 10 ²⁴)(10.0)	C1
			$= -\frac{(6.67 \times 10^{-11})(5.97 \times 10^{24})(10.0)}{(25 + 35) \times 10^6}$ = -6.64 × 10 ⁷ J	A1
			(accept if algebraic method gives correct final answer)	

Que	stion		Solution	Marks
6	(a)		$v = f\lambda$ $340 = (20 \times 10^3)\lambda$ or $340 = (80 \times 10^3)\lambda$ $\lambda = 17 \text{ mm}$ or $\lambda = 4.3 \text{ mm}$ 4.3 mm to 17 mm.	M1 A1
			(also accept 12.8 mm for the range in between)	
	(b)	(i)	Displacement at L = $1.5 - 0.7 = 0.8$ (units) Displacement at M = 0 (units) since the two curves intersect Displacement at N = $0 - 1.0 = -1.0$ (units) Two answers correct	B1
			All three answers correct	B1
		(ii)	displacement /arbitrary units 2.0 1.0	B1 B1
	(c)	(i)	Value of $\Delta f = 51.25 - 50.80 = 0.45$ kHz and $f = 50.80$ kHz $\frac{\Delta f}{f} = \frac{2v}{c}$ $\frac{0.45}{50.80} = \frac{2v}{340}$	C1
		(::)	Insect's speed, $v = 1.51 \text{ m s}^{-1}$	A1 B1
		(ii)	Increase in frequency due to more frequent reflection of wave. (sound wave that is being reflected off the insect is being compressed)	(B1)
		(iii)	Towards bat. Any reasonable factor that interfere with the reflected waves	B1 B1
		()	 Echo from surrounding objects Presence of multiple bats using the same frequency sound waves 	

		- Evolved insects that produces sonic clicks to jam echolocation.	
	(iv)	Higher frequency wavelength of wave is smaller.	B1
		More sensitive to small change in frequency due to Doppler's effect.	B1
(d)	(i)	From Fig 6.4: Graph of In <i>I</i> against <i>x</i> is a straight line with negative	
		gradient,	
		equation of the straight line is : $\ln I = mx + \ln I_o$	B1
		where m is the gradient and $\ln I_o$ is the y-intercept	
		$\ln\left(\frac{I}{I_o}\right) = mx$	B1
		$\therefore \frac{I}{I_o} = e^{mx} \text{ or } I = I_o e^{mx}$	
		This equation is of the form of $I = I_0 e^{-\alpha x}$ where $m = -\alpha$	B1
	(ii)	Using Fig. 6.4,	
		gradient = $\frac{1.00 - 2.15}{2.75 - 1.00} = -0.657 = -0.7$	B1
		Hence $\alpha = 0.7 \text{ m}^{-1}$	
	(iii)	Density of air.	B1
		Denser air leads to smaller attenuation coefficient.	B1

Que	estion		Solution	Marks
7	(a)	(i)	Consider a hollow cylindrical shell with radius r , and height L	
			$dm = 2\pi\rho Lr$	M1
			$I = \int r^2 dm$	
			$= \int_{R_{in}}^{J_{R_{out}}} 2\pi\rho Lr^3 dr$	
			$= \left[\frac{\pi\rho L}{2}r^4\right]_{R_{in}}^{R_{out}}$	M1
			$= \frac{\pi L}{2} \left(\frac{M}{\pi (R_{out}^2 - R_{in}^2)L} \right) (R_{out}^4 - R_{in}^4)$	
			$= \frac{\pi L}{2} \left(\frac{M}{\pi L} \right) \left(R_{out}^2 + R_{in}^2 \right)$ $= \frac{1}{2} M \left(R_{out}^2 + R_{in}^2 \right)$	A1
		(ii)	$= \frac{1}{2}M(R_{out} + R_{in})$ For a solid cylinder, $R_{in} = 0$	
		(")		
			$I_{solid} = \frac{1}{2}MR_{out}^2$	A1
	(b)	(i)	2	
			block cylinder pulley Tension T_2 Weight of block Veight of cylinder Veight of cylinder All force correctly labelled	B1
			Relative length of vector arrows are correct (<i>W</i> all same and $W > T_2$) $T_2 > T_1$	B1 B1
			Horizontal component of reaction force by axel equals T_{1}	B1
		(ii)	$T_2 > T_1$ so that there is resultant clockwise torque acting on the pulley This ensures that the string does not slip on the pulley.	B1 B1
		(iii)	From the block: $Mg - T_2 = Ma (1)$	
			From the cylinder: $T_2R - T_1R = \frac{1}{2}MR^2\alpha (2)$	

-	1	1		
			From the pulley: $T_1 - f = Ma (3)$	
			Sub (1) and (3) into (2)	
			$Mg - Ma - (Ma + f) = \frac{1}{2}Ma$	
			$Mg - f = \frac{5}{2}Ma - (4)$	C1
			Torque acting on cylinder:	
			$2fR = \frac{1}{2}M(2R)^2\alpha$	
			$f = MR\alpha (5)$	
			Since cylinder is rolling without slipping, $a = 2R\alpha$ (5) becomes	M1
			$f = MR\left(\frac{a}{2R}\right) = \frac{1}{2}Ma$ Sub into (4),	M1
			$Mg - \frac{1}{2}Ma = \frac{5}{2}Ma$	
			$a = \frac{g}{2}$	A1
		(iv)	Using conservation of energy, GPE loss by block = gain in translational KE of cylinder and block	
			+ rotational KE of pulley and cylinder $Mgh = \frac{1}{2}Mv_{cylinder}^{2} + \frac{1}{2}Mv_{block}^{2} + \frac{1}{2}I_{pulley}\omega_{pulley}^{2}$	B1
			$+\frac{1}{2}I_{cylinder}\omega_{cylinder}^2$	
			we also know that $v_{cylinder} = v_{block} = v$ Since cylinder and pulley are rolling,	B1
			Since cylinder and pulley are rolling, $v_{cylinder} = 2R\omega_{cylinder}$	
			$v_{pulley} = R\omega_{pulley}$ We will arrive at	B1
			$Mgh = Mv^{2} + \frac{1}{2} \left(\frac{1}{2}M(2R)^{2}\right) \left(\frac{v}{2R}\right)^{2} + \frac{1}{2} \left(\frac{1}{2}MR^{2}\right) \left(\frac{v}{R}\right)^{2}$	
			$gh = \frac{3}{2}v^2 - (1)$	
			Differentiating (1) w.r.t time,	B1
			$g\frac{dh}{dt} = \frac{3}{2}2(v)\frac{dv}{dt}$ $gv = 3va$	
			$\begin{array}{c} gv = 3vu\\ a = \frac{g}{3} \end{array}$	
	(c)		Acceleration of the block is larger.	B1
			All GPE lost by block converted to translational KE of the cylinder.	B1

Question			Solution	Marks
8	(a)	(i)	CE	A1
		(ii)		A1
	(b)	(i)		A1 A1
	(b)	(i)	$\frac{1}{2}CE^2$	A1
		(ii)	CE ²	A1
		(iii)	By Kirchhoff's voltage law, and noting $i = \frac{dq}{dt}$ $E - iR - \frac{q}{C} = 0$ $Ri + \frac{q}{C} = E$ $R\frac{dq}{dt} + \frac{q}{C} = E$ (shown)	M1 A0
		(iv)	$\frac{dq}{dt} = -\frac{B}{\tau}e^{-\frac{t}{\tau}}$ Using the equation from (b)(iii),	B1
			$R\left(-\frac{B}{\tau}e^{-\frac{t}{\tau}}\right) + \frac{1}{C}\left(A + Be^{-\frac{t}{\tau}}\right) = E$ when $t \to \infty$, $R(0) + \frac{1}{C}(A + 0) = E$ $\Rightarrow A = CE$ when $t = 0, q = 0$	B1

		$-\frac{RB}{\tau} + \frac{1}{C}(A+B) = E$	
		$-\frac{\tau}{\tau}\frac{C}{\tau} + \frac{B}{C} = 0$	
		$\frac{-\tau}{\tau} + \frac{-\tau}{C} = 0$ $\Rightarrow \tau = RC$	
		$\Rightarrow t = KC$	
		when $t = 0$, $q = 0$	
		Using $q = A + Be^{-\frac{t}{\tau}}$	
		0 = A + B $\Rightarrow B = -A = -CE$	
		$\rightarrow D - A - CL$	
		Correct expression for A and B	A1
		Correct expression for $ au$	A1
		OR	
		$R \frac{dq}{dt} + \frac{q}{C} = E$	
		$\frac{dq}{dt} = \frac{CE - q}{RC}$	
		$\int_{0}^{q} \frac{1}{CE - q} dq = \frac{1}{RC} \int_{0}^{t} dt \text{(correct integration)}$	(B1)
		$-\left[\ln(CE-q)\right]_{0}^{q}=\frac{1}{RC}[t]_{0}^{t}$	
		$\ln\left(\frac{CE-q}{CE}\right) = -\frac{t}{RC}$	
		$\frac{CE-q}{CE} = e^{-\frac{t}{RC}}$	
		$q = CE - CEe^{-\frac{t}{RC}}$	(B1)
		Hence, $A = CE$, $B = -CE$	
		and $\tau = RC$	
	(v)	$q = CE - CEe^{\frac{t}{RC}}$	
		$dq CE - \frac{t}{BC}$	MO
		$dt = \frac{1}{RC} e^{-t}$	
		$\frac{dq}{dt} = \frac{CE}{RC}e^{-\frac{t}{RC}}$ $I = \frac{E}{R}e^{-\frac{t}{RC}}$	A1

	(vi)	$P = I^2 R$	
		$= \left(\frac{E}{R}e^{-\frac{t}{RC}}\right)^2 R$	
		$=\frac{E^2}{R}e^{-\frac{2t}{RC}}$	M1
		$\frac{dE_R}{dt} = \frac{E^2}{R} e^{-\frac{2t}{RC}}$	
		$E_{R} = \frac{E^{2}}{R} \int_{0}^{\infty} e^{-\frac{2t}{RC}} dt$	
		$= -\frac{1}{2}CE^{2}\left[e^{-\frac{2t}{RC}}\right]_{0}^{\infty}$	
		$=\frac{1}{2}CE^2$	A1
	(vii)	Yes. The result is in agreement as half of the energy supplied by the battery is used to charge to capacitor the other half is dissipated in the resistor.	B1
(c)	(i)	Since the capacitors are connected in series,	
		$\frac{1}{C_{T}} = \frac{1}{C_{1}} + \frac{1}{C_{2}}$	
		$\left \overline{C_{\tau}}^{-} \overline{C_{1}}^{+} \overline{C_{2}} \right $	
		$\frac{1}{C_{-}} = \frac{1}{2.5 \times 10^{-6}} + \frac{1}{1.1 \times 10^{-6}}$	
		C_{τ} 2.5×10 ⁻⁶ 1.1×10 ⁻⁶	
		$C_{\tau} = \frac{(2.5 \times 10^{-6})(1.1 \times 10^{-6})}{(2.5 + 1.1) \times 10^{-6}} = 7.6 \times 10^{-7} F$	M1
		Since the capacitors are connected in series, charge on each capacitor are the same.	
		Hence charge on each capacitor, $Q = CV$	
		$= (7.6 \times 10^{-7})(9.0)$	Δ1
	(ii)	= 6.88 µC (both must be correct to be awarded) $V_1 = \frac{Q}{C_1} = \frac{6.8}{2.5} = 2.75 V$	A1
		$V_2 = \frac{Q}{C_2} = \frac{6.88}{1.1} = 6.25 V$	
		(both must be correct to be awarded)	A1
		(ecf accepted if (c)(i) is wrong)	
	(iii)	Since no current in R_1 , p.d. across R_2 = p.d. across C_2 = 6.25 V	M1
		current through $R_2 = \frac{C_2}{I} = \frac{6.25}{58} = 0.108 A$	C1
		Hence, $C_{\star} = 2.75$	
		<i>R</i> of variable resistor $=\frac{C_1}{I} = \frac{2.75}{0.108} = 25.5 \Omega$	A1

Question			Solution	Marks
9 (a)	(i) (ii)		The <i>Principle of Superposition</i> states that when <u>two or more</u> <u>waves of the same type meet</u> , the resultant displacement at any point is the <u>vector sum of the individual displacements</u> that each wave would cause at that point.	B1 B1
			Phase difference is an angular measure of how much an oscillation is out of step with itself at 2 different instances in time (or how much 2 oscillations are out of step with each other at the same instant in time).	B1
			Path difference between 2 waves is a measure of the difference in distance travelled from their respective coherent wave sources which are in phase with each other, and is usually expressed in terms of number of wavelengths.	B1
(b)	(i)	1	$path difference = d \sin \alpha$	A1
		2	$Total \ path \ difference = d \sin \alpha + d \sin \beta$	A2
		3	For strong diffraction, Path difference should be an integer-multiple of a wavelength.	
			$d \sin \alpha + d \sin \beta = m\lambda$ where <i>m</i> is an integer.	A1
	(ii)	1	Bright lines produced by a <u>2 slit source is less sharp compared</u>	B1
		2	to a diffraction grating making it difficult to precisely measure θ . Bright lines produced by a <u>2 slit source is less bright</u> compared	B1
		2	to a diffraction grating making it difficult to accurately measure θ .	Ы
(c)	(i		Ray 2 (1 st order) a 44.9° 44.9° 44.9° 44.9° 44.9° 44.9° 44.9° 44.9° 44.9° 44.9° 44.9° 44.9° 44.9° 12.5° $8ay 1 (1^{st} order)$ $8ay 2 (1^{st} order)$ $8ay 2 (1^{st} order)$ $8ay 2 (2^{nd} order)$ Upper 1 st order deflected upwards and lower 1 st order downwards. Using equation in (b)(i)3, $d(\sin \alpha + \sin 12.5^{\circ}) = \lambda (1)$ $d(\sin 49.7^{\circ} + \sin \alpha) = \lambda (2)$ Solving equation (1) and (2) $\alpha = 15.849^{\circ} = 15.8^{\circ}$	B1 M1 C1 A1

	(iii)	Using $d(\sin \alpha + \sin 12.5^\circ) = \lambda$ (1)	
		$d(\sin 15.8^\circ + \sin 12.5^\circ) = 633 \times 10^{-9}$	
		$d = 1.2931 \times 10^{-6} = 1.30 \times 10^{-6} m$	A1
	(iv)	In the upwards direction, the maximum order can be found from:	
		$d(\sin 90^\circ + \sin 15.849^\circ) = m\lambda$	
		$(1.2931 \times 10^{-6})(1 - 0.27310) = m(633 \times 10^{-9})$	
		m = 1.48 = 1 (round down to nearest integer)	B1
		The first order is the maximum order.	B1
		In the downwards direction, the maximum order can be found from:	
		$d(\sin 15.489^\circ + \sin 90^\circ) = m\lambda$	
		$(1.2931 \times 10^{-6})(0.27310 + 1) = m(633 \times 10^{-9})$	
		m = 2.6007 = 2 (round down to nearest integer)	B1
		The second order is the maximum order.	B1
		To find the angle for this second order, $d(\sin 15.489^\circ + \sin \beta) = 2\lambda$	
		$(1.2931 \times 10^{-6})(0.27310 + \sin\beta) = 2(633 \times 10^{-9})$ $\beta = 44.906^{\circ} = 44.9^{\circ}$	A1