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Mathematical Formulae 

 

1. ALGEBRA 

 

Quadratic Equation 

 For the equation 02 =++ cbxax ,   
2( 4 )

2
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Binomial Expansion 
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where n is a positive integer and 
( )

! ( 1) ( 1)

! ! !

n n n n n r

r r n r r

  − − +
= = 

− 
 

 

 

2. TRIGONOMETRY 

Identities 

sin2 A + cos2 A = 1 

sec2 A = 1 + tan2 A 

cosec2 A = 1 + cot2 A 

BABABA sincoscossin)sin( =  

BABABA sinsincoscos)cos( =  

BA

BA
BA

tantan1

tantan
)tan(




=  

AAA cossin22sin =  

AAAAA 2222 sin211cos2sincos2cos −=−=−=  

A

A
A

2tan1

tan2
2tan

−
=  

Formulae for ABC 

A

a

sin
 = 

B

b

sin
 = 

C

c

sin
 

a2 = b2 + c2 − 2bc cos A 

 = 
2

1
bc sin A 
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1 The curve 
2

4

x y
x b

a
− = + , where a and b are constants, intersects the y-axis at A 

and the x-axis at B and C. The coordinates of B are ( )2,0− . Given that the gradient 

of AB is 3− , find the value of a and of b. 

 

 

 

[5] 

   

 
Sub ( )2,0B − ,   

( )
2

2 0
2

4
b

a

−
− = − +                      [M1] 

                                            3b =                              [A1] 

Sub 0,x =  3b = , 
y

b
a

− =  

                                 3y a= −  --- (1)                         [M1] 

( )0, 3A a−  

Gradient of AB 
( )0 3

3
2 0

a− −
= = −

− −
          [M1] 

3
3

2

a
= −

−
 

2a =                                  [A1] 
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2 The equation of a curve is 
3

cos 2
2

y c x= −  where c is a constant. The curve passes 

through the point 
1

,
6 4

 
 
 

. 

 

 (a) Find the value of c. [2] 

   

 

Sub 
1

,
6 4

 
 
 

 

1 3
cos 2

4 2 6
c

 
= −  

 
           [M1] 

1 3 1

4 2 2
c

 
= −  

 
 

1c =                                   [A1] 

 

 

 

 
 

(b) Using the value of c found in part (a), sketch the graph of 
3

cos 2
2

y c x= −  

for 0 2x   . 

 

[B1 – 2 complete cycles] 

[B1 – start and end at -0.5] 

[B1 – fully correct curve with correct Max value @ 2.5 or Min value @ -0.5] 

 

 

 

[3] 
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(a) Write down, and simplify, the first 4 terms in the expansion of 

8

1
2

x 
− 

 
 in 

ascending powers of x. 

 
 

 

[3] 

   

( ) ( ) ( ) ( )
8 1 2 3

8 7 6 58 8 8
1 1 1 1 1 ...

1 2 32 2 2 2

x x x x            
− = + − + − + − +            

            
 

              2 31 4 7 7 ...x x x= − + − +  

 

[B1 – 1st and 2nd term correct] 

[B1 – 3rd term correct] 

[B1 – 4th term correct] 

 

 

 

 

 

 

 

 

  

(b) Find the coefficient of x in the expansion of 

8 2
2

1 3
2

x
x

x

   
− +   

   
. 

 

[3] 

   
2

2

2

2 4
3 12 9x x

x x

 
+ = + + 

 
                 [M1] 

 

( )
8 2

2 3 2

2

2 4
1 3 1 4 14 7 ... 12 9

2

x
x x x x x

x x

     
− + = − + − + + +     

     
 

 

Terms with x ( )( ) ( )3

2

4
4 12 7x x

x

 
= − + −  

 
             [M1] 

                      48 28 76x x x= − − = −  

Coefficient of x 76= −                                                           [A1] 
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(a) Given that 
2 1

xe
y

x
=

+
, 1x  , explain, with working, whether y is an 

increasing or decreasing function. 

 
 

 

[3] 
    

( ) ( )

( )

2

2
2

1 2

1

x xx e x edy

dx x

+ −
=

+
                 [M1] 

     
( )

( )

2

2
2

1 2

1

xe x x

x

+ −
=

+
 

     
( )

( )

2

2
2

1

1

xe x

x

−
=

+
                [M1] 

Since ( )
2

2 1 0x +  , ( )
2

1 0x −   and 0xe  , therefore 0
dy

dx
       

y is increasing function.                                                                  [B1] 

 

 

 

 

 

 

 

 

 

 (b) Air is escaping from a hole in a spherical balloon of radius r cm in such a 

way that the total volume, V cm3, is decreasing at a constant rate of 25  

cm3/s. Assuming that the balloon retains its shape, calculate the rate of 

change of r when 5r = . 

 

 

 

[3] 
   

34

3
V r=  

24
dV

r
dr

=                            [M1] 

 

dV dV dr

dt dr dt
=   

( )
2

25 4 5
dr

dt
 − =               [M1] 

1

4

dr

dt
= −  cm/s                        [A1] 
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5 The number of fishes, F in a fish farm after t days can be modelled by the formula 

6000 ktF Ae= +  where A and k are constants. Initially, there were 2500 fishes in 

the fish farm and 5 days later, there were 3500 fishes. 

 

 

 
(a) Show that 3500A = −  [1] 

  Sub 0, 2500t F= =  
( )0

2500 6000
k

Ae= +                       [M1] 

2500 4000 3500A = − = −  

 

 

 (b) Find the number of days required for the fishes to increase its population by 

80%. 

 

[3] 

   
( )5

3500 6000 3500
k

e= −                 [M1] 

0.067294k = −           

0.067294180
2500 6000 3500

100

te− = −        [M1] 

12.6t =  days                              [A1] 

 

 

 (c) Explain why the number of fishes in the fish farm cannot be 6000.   

[2] 

   

Suppose the no. of fishes is 6000, then  
0.06736000 6000 3500 te−= −  

0.0673 0te− =                    [B1] 

But 0.0673 0te−   for all real values of t 

Hence the no. of fishes cannot be 6000.      [B1] 
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6 A curve is such that 
2

2
2sin 3cos 2

d y
x x

dx
= −  and the point ( ),5A   lies on the 

curve. The gradient of the curve at A is 3− . Find the equation of the curve. 

 

 

 

[6] 

  
2

2
2sin 3cos 2

d y
x x

dx
= −  

3
2cos sin 2

2

dy
x x c

dx
= − − +                              [M1] 

Sub , 3
dy

x
dx

= = −  

( ) ( )
3

3 2cos sin 2
2

c − = − − +             [M1] 

( )3 2 1 0 c− = − − − +  

5c = −                                                               

3
2cos sin 2 5

2

dy
x x

dx
= − − −                           [A1] 

 

3
2sin cos 2 5

4
y x x x d= − + − +             [M1] 

Sub , 5x y= =  

( ) ( ) ( )
3

5 2sin cos 2 5
4

d  = − + − +             [M1]      

( ) ( )
3

5 0 1 5
4

d= + − +  

17
5

4
d = +                                                                                  

3 17
2sin cos 2 5 5

4 4
y x x x = − + − + +                [A1] 
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(a) Express each of 28 4x x− +  and 22 12 14x x− − −  in the form ( )
2

a x b c+ + , 

where a, b and c are constants. 

 

 

[4] 

 
 

 
2 28 4 4 8x x x x− + = − +  

                  ( )
2

2 4
2 8

2
x

 
= − − + 

 
                  [M1] 

                  ( )
2

2 4x= − +                              [A1] 

 

( )2 22 12 14 2 6 7x x x x− − − = − + +  

                         ( )
2

2 6
2 3 7

2
x

  
= − + − +  

   

          [M1] 

                         ( )
2

2 3 2x = − + −
 

  

                         ( )
2

2 3 4x= − + +                             [A1] 

 

 

 

 (b) Use your answers from part (a) to explain if the curves with equations 
28 4y x x= − +  and 

22 12 14y x x= − − −  will intersect. 

 

[3] 

 
 

 

Min point of 
28 4y x x= − +  is ( )2,4                     [B1] 

Max point of 
22 12 14y x x= − − −  is ( )3,4−          [B1] 

Since 28 4 4x x− +   and 22 12 14 4x x− − −  , the only possible intersection 

is at the turning point, however, the turning points are not the same and 

hence both curves will not intersect.                [B1] 
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8 Without using a calculator,  

 

 

(a) show that 
3 1

sin15
2 2

−
 = , 

 

[3] 

 
 

 

( )sin15 sin 60 45 = −   

           sin 60 cos 45 cos60 sin 45=  −           [M1] 

           
3 2 1 2

2 2 2 2

     
= −              

         [M1] 

           
( )2 3 1

2 2 2

−
=  

           
3 1

2 2

−
=                                 [A1] 

 

 

 

 

 

 

 

(b) express 2cosec 15  in the form 3p q+ , where p and q are integers. [4] 

 
 

 

2

2

1
cosec 15

sin 15
 =


                    [M1] 

                 
2

1

3 1

2 2

=
 −
 
 

 

                 
( )

( )

2

2

2 2

3 1

=

−

                 [M1] 

                 
( )4 2

3 2 3 1
=

− +
 

                 
8

4 2 3
=

−
 

                 
4 2 3

2 3 2 3

+
= 

− +
        [M1] 

                 
8 4 3

4 3

+
=

−
 

                 8 4 3= +                       [A1] 
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9 In the figure, ABCD is a square plastic plate of side 4 cm and PQRS is a square 

whose centre coincides with that of ABCD. The shaded regions are to be cut off and 

the remaining plastic is folded to form a right pyramid with base PQRS.  

Given that PQ = 2x cm and V is the volume of the pyramid. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 (a) Show that the height of the pyramid is 2 1 x−  cm. [2] 

   

By Pythagoras Thm, 

222 )2( xxh −−=               [M1] 

2 2 24 4h x x x= − + −  

2 4 4h x= −  

2 1h x= −              [A1] 

 

 

  

 

2x 

A 

  R S 

B 

C 

  Q P 

D 

4 cm 

Centre of sq Midpt of PS 

h 

x 

2 x−  

Midpt of AD 

 

2x 4 cm 
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(b) Given that x can vary, find the value of x for which V has a stationary value and 

determine if it is a maximum or a minimum. [5] 

  

 

 xxV −= 12)2(
3

1 2

 

28
1

3
V x x= −                           [B1] 

 
1 1

22 2
8 8 1

(2 )(1 ) (1 ) ( 1)
3 3 2

dV
x x x x

dx

− 
= − + − − 

 
            [M1] 

        
1

2
4

(1 ) 4(1 )
3

x x x x
−

= − − −  

        
4 (4 5 )

3 1

x x

x

−
=

−
 

0
dV

dx
=  

4 (4 5 )
0

3 1

x x

x

−
 =

−
                [M1] 

0)54( =− xx  

0x =  or 
4

5
x =                

 
1

2 2
1

(16 20 )(1 )
3

dV
x x x

dx

−

= − −  

1 32
22 2

2

1 1
(16 40 )(1 ) (16 20 ) (1 ) ( 1)

3 2

d V
x x x x x

dx

− −   
= − − + − − − −  

   
                  

[M1] 

When 
4

5
x = , 

2

2
0

d V

dx
              

V has a maximum value at 
4

5
x = .         [A1] 

 

[Award M1A1 for correct 1st derivative test] 
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(a) The function ( ) 3 2f 2 3x x x ax b= − + + , where a and b are constants, is exactly 

divisible by 1x − . Given that ( )f x  leaves a remainder of 2 when divided by 

1x + , find the value of a and b and hence solve the equation ( )f 0x =  

 

 
[6] 

 
 

 

By Factor thm, 

( ) ( ) ( ) ( )
3 2

f 1 2 1 3 1 1 0a b= − + + =  

1a b+ =  --- (1)                                                    [M1] 

By Remainder thm, 

( ) ( ) ( ) ( )
3 2

f 1 2 1 3 1 1 2a b− = − − − + − + =  

7a b− + =  --- (2)                                                 [M1] 

(1)+(2):    2 8b =  

                   4b =                                             [A1] 

Sub 4b =  to (1):    3a = −                              [A1] 

( ) 3 2f 2 3 3 4x x x x = − − +                                    

 

( ) ( )( )2f 1x x Ax Bx C= − + +  

By inspection,  

for 2x : 2A =  

for 0x : 4C = −  

for x : 3C B− = −  

          4 3B− − = −  

                  1B = −  

( ) ( )( )2f 1 2 4x x x x = − − −                        [M1] 

( )( )21 2 4 0x x x− − − =  

1x =  or 
( ) ( )( )

( )

2
1 1 4 2 4

2 2
x

 − − −
=  

               1.69, 1.19x = −                                [A1] 

 

 

 
 

(b) It is given that 3x −  is a factor of ( )g 2x + , where ( )g x  is a polynomial. Find 

the remainder when ( ) ( )3h 4 g 3x x x= + +  is divided by 3x − . 

 

[2] 

 
 

 

( ) ( )3h 4 g 3x x x= + +  

           ( )34 1 g 2x x= + + +              [M1] 

 
By Remainder Thm, 

( ) ( )
3

h 3 4 3 1 0= + +  [since 3x − is a factor of ( )g 2x + ] 

         109=                                    [A1] 
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11 In the figure below, YZ WZ=  and the line WAB is tangent to the circle at the point 

W. Line AX bisects angle WXY and cuts the circle at point Z. 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) Show that AWZ ZWY =  [3] 

 

 

 
AWZ WXZ =  (alternate segment theorem)   [B1] 

WXZ YXZ =  (AX bisects WXY )                [B1] 

ZWY YXZ =  (s in the same segment)        [B1] 

Hence AWZ ZWY =  (shown) 

 

 

 

 

 

 

 

 

 (b) Show that AW WX AX YZ =   [5] 

 

 

 

AWZ AXW =  (alternate segment theorem)   [B1] 

WAZ WAX =  (common )                           [B1] 

ZWA is similar to WXA  (AA)    (shown) 

 

Since ZWA is similar to WXA , 

ZW AW

WX XA
=                       [B1] 

Since YZ = WZ, 

YZ AW

WX AX
=                       [B1] 

Hence AW WX AX YZ =              [B1] 

 

 

 

 

  

O 

W 

X 

Y 

Z 

A B 
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(a) Show that 25sin 2 2cos 2 2
5tan 2 tan

1 cos 2

x x
x x

x

+ −
= −

+
. [5] 

  

 

LHS 
( ) ( )2

2

5 2sin cos 2 1 2sin 2

1 2cos 1

x x x

x

+ − −
=

+ −
       [B1 – correct 2sin cosx x ] 

                                                                           [B1 – correct 21 2sin x− ] 

                                                                           [B1 – correct 22cos 1x − ] 
2

2

10sin cos 2 4sin 2

2cos

x x x

x

+ − −
=  

2

2 2

10sin cos 4sin

2cos 2cos

x x x

x x
= −  

25sin
2 tan

cos

x
x

x
= −                             [M1] 

25tan 2 tanx x= −                              [A1] 

=RHS 

 

 

 

 

 

(b) Solve the equation 
5sin 2 2cos 2 2 1

tan
1 cos 2 2

x x
x

x

+ −
=

+
 for 0 360x    . [4] 

  

 

2 1
5tan 2 tan tan

2
x x x− =                         [M1] 

2 1
2 tan 5tan tan 0

2
x x x− + =  

22 tan 4.5 tan 0x x− =                       

( )tan 2 tan 4.5 0x x − =                           [M1] 

tan 0x =  or 2 tan 4.5 0x − =                      

Basic angle 0=   or 
9

tan
4

x =                    

0 ,180 ,360x =     [A1]        or   Basic angle 66.038=   

                    or          66.0 ,180 66.0x =  +                       [A1] 

0 ,66.0 ,180 ,246.0 ,360x =                                          
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13 Two bicycles, A and B leave a point O at the same time and travel along the same 

straight line. Bicycle A starts from rest and travels with a uniform velocity of 1.5 

m/s. The velocity of Bicycle B, t seconds after leaving O, is given by 
210 3BV t t= + − m/s .  

 

  

(a) Find the value of t when Bicycle B is instantaneously at rest. [2] 
 

  
210 3 0t t+ − =                       [M1] 

23 10 0t t− − =  

( )( )3 5 2 0t t+ − =                 

2t =  or 
5

3
t = −  (rej)       [A1] 

 

 

 

 

 

 

 

  

(b) Find the distance travelled by Bicycle B in the first 3 seconds. [3] 
 

  

2
2 2 3

0

21
10 3 10

02
t t dt t t t

 
+ − = + − 

 
       [M1] 

                          14=  
3

2 2 3

2

31
10 3 10

22
t t dt t t t

 
+ − = + − 

 
      [M1] 

                             
15

14 6.5
2

 
= − = − 
 

 

Distance travelled 14 6.5 20.5= + = m       [A1] 
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(c) Find the distance from O when Bicycle B first meet with Bicycle A again.  [5] 
 

   

1.5 1.5AS dt t c= = +  

When 0, 0, 0t s c= =  =  

1.5AS t=                                                              [B1] 

2 2 31
10 3 10

2
BS t t dt t t t c= + − = + − +  

When 0, 0, 0t s c= =  =  

2 31
10

2
BS t t t= + −                                               [B1]      

At collision, 2 31
1.5 10

2
t t t t= + −                         [M1] 

3 21
8.5 0

2
t t t− − =  

2 1
8.5 0

2
t t t
 

− − = 
 

 

0t =  or 2 1
8.5 0

2
t t− − =  

                
( ) ( )( )

( )

2
0.5 0.5 4 1 8.5

2 1
t

 − − −
=               

               3.1762, 2.6762t = −  (rej)                          [A1] 

Sub 3.1762t =  

( )1.5 3.1762 4.76AS = = m          [A1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

End of Paper 


