
Tampines Secondary SchoolSec 4E/5NA/4NA OOS Math Prelim Exam Paper 1 2024 Marking Scheme

Total Marks: 90

v = follow through

No.	Answers	Marks
1	3x - 8 < 56	M1
	3 <i>x</i> < 64	
	<i>x</i> < 21.3	
	The largest prime number is 19	A 1
-		Al
2	-2a + 15b	B1
3	$4(x^3-5y)(x^3+5y)$	B1 for $4(x^3 - 5y)(x^3 + 5y)$
		or $(2x^3 - 10y)(2x^3 + 10y)$
		seen
4(a)		B1
	$y = 2(3)^{x}$	
(b)	p = -3	B1
5		M1
Э	Total number of rhinos = $27000 \left(1 + \frac{3}{100}\right)^4$	M1
		A1
	$= 30388.73 \approx 30000$	

No.	Answers	Marks
8(a)	$2420 = 2^2 \times 5 \times 11^2$	B1
	Not all the powers of the prime factors are multiples of 3, hence 2420 is not a perfect cube.	B1
(b)	$LCM = 2420 = 2^2 \times 5 \times 11^2$	
	$HCF = 110 = 2 \times 5 \times 11$	
	The two numbers are $2^2 \times 5 \times 11 = 220$ and $2 \times 5 \times 11^2 = 1210$	B1, B1
9(a)	$\left(\frac{27x^{15}}{8y^{12}}\right)^{-\frac{1}{3}} = \left(\frac{8y^{12}}{27x^{15}}\right)^{\frac{1}{3}}$	
	$=\frac{2y^4}{3x^5}$	$D1 f_{rm} 2m^4$
	5 <i>x</i>	B1 for $2y^4$
		B1 for $3x^5$
(b)(i)	(y-2)(4x+1)	B1,B1
(ii)	(y-2)(4x+1) = 0	√ V
()	(y-2)(4x+1) = 0 y = 2 or $x = -\frac{1}{4}$	v
	$y = 2$ or $x = -\frac{1}{4}$	VB1 for both correct values
10(a)	For the vertical bars, the area of each bar is not directly proportional to the height, hence readers might be misled that the amount spent on hotel stays in 2021 is about 4 times that in 2020 instead of only 2 times as shown by the height.	B1 for misleading fact B1 for explanation of why this misleading fact cause misinterpretation.
	[Accept other reasonable responses]	
(b)	The chart does not support her claim because between 2021 and 2022, the amount spent on flight increases but the amount spent on hotel stays decreases.	B1
	[Accept other reasonable responses]	

No.	Answers	Marks
11(a)		D1
(i)		B1
(ii)	¢	B1
(b)	ξ P $P' \cup Q'$	B1
(c)(i)	<i>x</i> = 21	B1
(ii)	$\left(\frac{21}{120} \times \frac{20}{119} \times \frac{74}{118}\right) + \left(\frac{74}{120} \times \frac{21}{119} \times \frac{20}{118}\right) + \left(\frac{21}{120} \times \frac{74}{119} \times \frac{20}{118}\right)$ $= \frac{111}{2006} \text{or } 0.0553$ $\frac{\text{Alternative Method}}{\left(\frac{21}{120} \times \frac{20}{119} \times \frac{74}{118}\right) \times 3 = \frac{111}{2006} \text{or } 0.0553$	M1 for $\frac{21}{120} \times \frac{20}{119} \times \frac{74}{118}$ seen M1 for addition A1 M2 + A1
12	3, 5, 5, 7, 10 or 4, 5, 5, 5, 11	B1
13(a)	10:4:7	B1
(b)	Flour : Sugar : Butter 1500 : 500 : 1000 $1500 \div 250 = 6$ $500 \div 100 = 5$ $1000 \div 175 = 5$ Maximum number of biscuits made = 5×25	M1
	=125	A1

No.	Answers	Marks
14(a)	$x^{2} - 5x + 9 = (x - 2.5)^{2} - \frac{25}{4} + 9$	
	$=\frac{11}{4} + (x - 2.5)^2$	
	11	
	$p = \frac{11}{4}$ or $p = 2.75$	
(b)	5	B1
(b)	$x = \frac{5}{2}$ or $x = 2.5$	B1
15(a)	2 .	B1 for the correct gradient
	$y = -\frac{2}{5}x + 4$	B1 for the correct y-intercept
(b)	Let the shortest distance from P to line L be h .	
	Let θ be the angle made between the line and the <i>x</i> -axis.	
	Let b be the angle made between the fine and the x-axis.	
	$\tan\theta = \frac{4}{10} \Longrightarrow \theta = 21.8014^{\circ}$	M1
	h	
	$\frac{h}{7} = \sin 21.8014$	M1
	$h = 7 \times 0.713 \approx 2.60$	A1
	Alternative Method	
	$\frac{h}{4} = \frac{7}{\sqrt{116}}$	M1, B1 for $\sqrt{116}$ seen
	$h = \frac{28}{\sqrt{116}} \approx 2.60$	A1
16	Interior angle of polygon A = $360^{\circ} - 135^{\circ} - 60^{\circ} = 165^{\circ}$	B1
	Let n be the number of sides of polygon A.	
	$\frac{(n-2)\times 180}{n} = 165$	M1
	180n - 360 = 165n	
	$n = \frac{360}{15} = 24$	A1

No.	Answers	Marks
17	$P = \frac{k}{\sqrt{Q}}$	
	$\frac{k}{\sqrt{9}} + \frac{k}{\sqrt{16}} = 21$	M1
	$\frac{k}{3} + \frac{k}{4} = 21$	
	$\frac{7k}{12} = 21$	
	7k = 252 $k = 36$	
	$\frac{36}{\sqrt{Q}} = 100$	M1
	$Q = \left(\frac{36}{100}\right)^2 = 0.1296$ [Accept $\frac{81}{625}$]	A1
18(a)		216
10(<i>a</i>)	Perimeter = $\frac{216}{360} \times 2 \times \pi \times 10 + 20$	M1 for $\frac{216}{360} \times 2 \times \pi \times 10$
	$=12\pi+20$	
(b)	$2\pi r = 12\pi$	M1
	r = 6	
	Height of the cone = $\sqrt{10^2 - 6^2} = 8$	M1
	Volume of the cone $=\frac{1}{3} \times \pi \times 6^2 \times 8$	M1
	$= 301.59 \approx 302$	A1
19	AD = BC (opposite length of parallelogram)	B1
	$\angle EAD = \angle ADB = \angle DBC$ (alternate angle)	B1
	$\angle EDA = \angle EDP - \angle ADP$ = $\angle DPC - \angle DBC$ (alternate angle)	B1 for using alternate angle
	$= \angle PCB $ (exterior angle)	B1 for using exterior angle or other equivalent reason to conclude that $\angle EDA = \angle PCB$
	$\therefore \Delta BCP \equiv \Delta ADE \text{ (ASA)}$	A1 for ASA shown

No.	Answers	Marks
20(a)	6, 12, 22, 36	B1
(i)		
(ii)	$2n^2 + 4 = 2(n^2 + 2)$ is a multiple of 2 for all values of <i>n</i> , hence it is an	
	even number and not an odd number.	B1
(b)	$2k^2-3$	B1
()	$2\kappa - 5$	
21	4x+5 $4x+11$	
	$\frac{4x+5}{x} = \frac{4x+11}{x+2}$	M1
	(4x+5)(x+2) = x(4x+11)	M1
	$4x^2 + 13x + 10 = 4x^2 + 11x$	
	2x = -10	
	x = -5	A1
22(2)	47	B1
22(a)	47	Ы
(b)	20.5	B1
(0)	20.5	DI
(c)	1. On average Team B scored more points than Team A as their median	
(0)	score was 53 which was higher than the median score of 47 achieved by	B1
	Team A.	
	2. The interquartile range of Team B was higher than that of Team A	
	which was 17.5. Hence the scores for Team B was more widely spread	B1
	out.	
(d)	There is an outlier in the distribution scores of Team A which is	B1
	significantly greater than the rest of the scores.	
	1	

No.	Answers	Marks
23(a)	$(560 \ 420 \ 140)$	
	(490 280 280)	B1
(b)	$(560 \ 420 \ 140)$	
	$T = \begin{pmatrix} 1.25 & 2.50 \end{pmatrix} \begin{pmatrix} 560 & 420 & 140 \\ 490 & 280 & 280 \end{pmatrix}$	
	$=(1925 \ 1225 \ 875)$	B1
		DI
(c)	The total cost of the small and large vegetarian pies	B1
24(a)	$(DOR - 68)(2 - 126^{\circ})$ (angle at control = twice angle on simulations)	
24(a)	$\angle DOB = 68 \times 2 = 136^{\circ}$ (angle at centre = twice angle on circumference)	B1 for correct reasoning
		C C
	$\angle BCD = 180 - 68 = 112^{\circ}$ (angles in opposite segment)	
		B1 for correct reasoning
	$\angle ODC = 360 - 52 - 136 - 112 = 60^{\circ}$ (sum of angles in a quadrilateral is	
	360°)	B1
(b)	Area of the shaded segment	
	= Area of sector OCB – Area of triangle OCB	
	$=\frac{76}{360} \times \pi \times 5^2 - \frac{1}{2} \times 5^2 \times \sin 76^0$	
	360 2	M1 , M1
	= 4.451932	
	$= 4.45 \text{ cm}^2$	A1

No.	Answers	Marks
25	Curved surface of the small hemisphere	
	$=2\pi(3.6)^2=25.92\pi$ cm ²	M1
	Curved surface area of the cylinder	N/1
	$= 2\pi (3.6)(6.5) = 46.8\pi \text{ cm}^2$	M1
	Total surface area of the large hemisphere	
	$= 2\pi (5.4)^2 + \pi (5.4^2 - 3.6^2) = 74.52\pi \text{ cm}^2$	M1 , M1
		,
	Total surface area of the solid	
	$25.92\pi + 46.8\pi + 74.52\pi = 462.56 \approx 463 \text{ cm}^2$	A1
26(a)	40 - v	
, í	$\frac{40 - v}{0.5 - 2} = -6$	M1
	v = 31	A1
(b)	Distance (km)	B1 for correct curve drawn
		from $t = 0$ to $t=0.5h$
		B1 for correct curve drawn
	100 -	from $t = 0.5h$ to $t = 2h$
	90 -	
	80 -	B1 for values 10 and 63.25
		labelled correctly on the
	60	vertical axis
	50- 40-	
	30	
	20-	
	10	
	$0 \longrightarrow \text{Time (h)}$	
	0.5 2	