Chemical Bonding Part 1

We Believe You Can Fly

The Chemistry Specialist

Different Structures

Mg vs CCl₄ (giant metallic vs simple molecular)

Structure + Bonding

Mg has a giant metallic lattice structure with strong electrostatic forces of attraction between the cations and sea of delocalised mobile electrons.

CCI₄ is non-polar and has a simple molecular structure with weak instantaneous dipole – induced dipole forces of attraction between its molecules.

Energy

Since the strong electrostatic forces of attraction between the cations and sea of delocalised mobile electrons in Mg is stronger than the weak instantaneous dipole – induced dipole forces of attraction in CCI_4 , more energy is required to overcome this stronger force of attraction. Hence, Mg has higher melting/boiling point than CCI_4 .

Same Structures Different Bonding

*Cl*₂ vs NH₃ (simple molecular)

Structure

Both Cl₂ and NH₃ have a simple molecular structure.

Bonding

*Cl*₂ is non polar and has weak instantaneous dipole – induced dipole forces of attraction between its molecules.

NH₃ is polar and has strong hydrogen bonding between its molecules.

Energy

Since hydrogen bonding in NH₃ is stronger than the instantaneous dipole – induced dipole forces of attraction in Cl_2 , more energy is required to overcome this stronger force of attraction. Hence, NH₃ has higher melting/boiling point than Cl_2 .

Same Structures Same Bonding

NaCl vs MgCl2 (giant ionic)

Structure

Both **NaCl** and **MgCl**² have a giant ionic lattice structure.

Bonding

Both NaCl and MgCl₂ have strong electrostatic forces of attraction between their 2 oppositely charged ions.

Energy

Since both compounds has the same anion but the charge of Mg^{2+} is larger than that of Na⁺ and the ionic radius of Mg^{2+} is smaller than that of Na⁺, $MgCl_2$ has a larger lattice energy and has stronger ionic bond which requires more energy to overcome. Hence, $MgCl_2$ has higher melting/boiling point than NaCl.

Same Structures Same Bonding H2O vs HF (simple molecular)

Both H₂O and HF have a simple molecular structure.

Bonding

Both H₂O and HF are polar and have hydrogen bonding between its molecules.

Energy

Since H₂O has on AVERAGE 2 hydrogen bonds per molecule while HF has on AVERAGE 1 hydrogen bond per molecule, H₂O has more extensive hydrogen bonds which requires more energy to overcome. Hence, H₂O has higher melting/boiling point than HF.

