6093 Biology Yearly TYS 2020

No	Paper 1	Marks	Remarks
1	·	1	
2		1	
2		1	
4		1	
5		1	
6		1	
4 5 6 7		1	
8		1	
9		1	
10		1	
11		1	
12		1	
13		1	
14		1	
15		1	
16		1	
17		1	
18		1	
19		1	
20		1	
20 21		1	
22		1	
23		1	
24		1	
25		1	
25 26		1	
27		1	
28		1	
29		1	
30		1	
31		1	
32		1	
33		1	
34		1	
35		1	
36		1	
37		1	
38		1	
39		1	
40		1	
	Total	40	
	Total	10	

	Paper 2		
	Section A		
1a	A: ovary B: oviduct/ fallopian tube C: cervix	1 1 1	
1b	X on one of the oviduct nearer to an ovary	1	
1c	Fertilised egg becomes a <u>zygote</u> + cilia sweep the zygote along oviduct + peristaltic movements help to move zygote along the <u>oviduct</u> to the <u>uterus</u> ;	1	
	Zygote <u>divides</u> by <u>mitosis</u> to form <u>embryo</u> + embryo embeds/implants itself in the <u>uterine lining</u> seven days after fertilisation;	1	
	Amniotic sac begins to develop + encloses the embryo in the amniotic cavity containing amniotic fluid/	1	formation of amniotic sac/fluid or
	<u>villi</u> containing blood capillaries of embryo grow from embryo into the uterine wall making up a <u>placenta</u> + <u>umbilical cord</u> attaches embryo to placenta;		placenta
1di	sweep the zygote along oviduct	1	
1dii	respiratory system	1	
	Total	9	

2a	D: interphase + each chromatin thread undergoing <u>DNA replication</u> , resulting in a pair of <u>sister chromatids</u> , causing the mass of DNA to <u>double</u> from 8 a.u. to 16 a.u.; E: cytokinesis + division of cell to produce <u>two identical daughter cells</u> each containing the same number of <u>chromatin threads</u> causing mass of DNA to decrease to 8 a.u.;	1	
2bi	anaphase	1	
2bii	before: metaphase	1	
2biii	after: telophase	1	
ZDIII	haploid number: 3 explanation:	I	
	gametes are haploid means they contain half the number of chromosomes as normal plant cells produced when cells in the ovary or pollen grain/gonads undergo meiosis;	1	
	6 chromosomes will result in 3 homologous chromosomes + after meiosis, each daughter cell will contain 3 daughter chromosomes;	1	
2c	Homologous chromosomes may <u>cross over in prophase I</u> of meiosis + <u>exchange of genes</u> between the paternal and maternal chromosome producing <u>new combinations of genes</u> along the chromosomes which leads to genetic variation;	1	
	Random arrangement of chromosomes in metaphase I in meiosis + chromosome randomly line up + random separation of homologous chromosomes at anaphase I + independent assortment of chromosome + producing different combinations of genetic material in gametes + increasing genetic variation;	1	
	Random fertlisation + nuclues of any sperm fuses with nucleus of any egg + producing offspring of different combination of		
	genotypes + can lead to genetic variation;	1	
	Total	11	

3a			
	father mother		
	Genotype of parents	1	
	Gametes (I ^A) (I ^O) (I ^O)	1	
	Genotype of offspring IAIO IAIO IOIO	1	
3b	codominance results when the <u>two alleles</u> controlling a trait <u>both</u> <u>express</u> themselves in the organism;	1	
	multiple alleles is a term used for a gene that exists in more than two alleles for a given trait;	1	
	human blood group, A, B, AB and O are determined by three alleles, I ^A , I ^B and I ^O + a person can have any two of the alleles but not all three +	1	
	I ^A and I ^B exhibit co-dominance and are dominant over I ^O + individuals with alleles I ^A and I ^B will have AB blood group;		
3c	discontinuous variation is <u>difference in traits</u> between individuals of the same species +	1	
	which is controlled by one or a few genes / that show clear-cut phenotypes with no intermediate forms/ which is easily distinguishable and are not affected by environmental conditions		
3d	a gene is a <u>unit of inheritance</u> , born on a particular locus of a chromosome + <u>small segment of DNA</u> in a chromosome that controls a particular characteristic or protein in an organism;	1	
	Alleles are <u>different forms</u> of the <u>same gene</u> that occupy the <u>same</u> <u>relative positions</u> (locus) on a pair of <u>homologous</u> chromosomes;	1	
	Total	9	

4a	The <u>younger</u> the age men starts to smoke regularly, the <u>higher</u> the <u>chances</u> of dying when they reach ages between 40 to 60 years old;	1	
	men who started regular smoking at age 10 to 14 years old has a higher death rate of 2 a.u. compared to men who started regular smoking at 25 to 29 years old whose death rate is at 1.25 a.u.;	1	
	when men start to smoke regularly at a young age, the effect of tobacco smoke can occur earlier in their life + <u>frequent exposure</u> to tobacco smoke may <u>increase the risk of lung diseases</u> such as chronic bronchitis, emphysema and lung cancer + eventually increase risk of death at ages 40 to 60;	1	
4b	occlusion (blockage) of coronary arteries greatly <u>reduce the blood</u> <u>supply</u> to the heart muscles + eventually <u>blood flow is blocked</u> + causing <u>heart attack</u> ;	1	
	causing reduce/no supply of oxygen and nutrients such as glucose to heart muscles/ heart muscles do not receive enough oxygen and nutrients;	1	
	heart muscles <u>die</u> + extensive heart muscle damage is <u>fatal</u> as the heart is <u>no longer able to pump</u> blood to the various part of the body;	1	
4c	mothers who smoke may develop <u>occlusion</u> in their blood vessels + reducing blood supply to the <u>placenta</u> ;	1	
	causing reduced supply of <u>oxygen and nutrients</u> to the placenta + fetus <u>does not receive enough nutrients</u> ;	1	
	lacking of <u>proteins and fats</u> for the building of <u>protoplasm</u> and <u>new cells</u> + leading to low body mass of babies;	1	
	Total	9	

5a	40.00 ÷ 0.04 = 1000	1	
5b	<u>chemicals in insecticides</u> are <u>cannot be broken down</u> by microorganisms/ bacteria + when consumed, <u>cannot be excreted</u> but <u>stored in fatty tissues</u> of organisms who consume food that contains the chemicals;	1	
	bioaccumulation + chemicals <u>accumulate</u> in the bodies of primary consumer (small fishes) transferred to secondary consumer (large fishes) and eventually tertiary consumers (fish-eating birds) through <u>feeding</u> ;	1	
	bioamplification + <u>increase in the concentration of chemicals</u> as you move <u>up the food chain</u> + higher proportion of fish-eating birds (top of food chain) died compared to other consumers in the food chain;	1	
5c	number of <u>large fishes increases rapidly</u> due to the absence of a <u>predator</u> (fish-eating birds);	1	
	number of small fishes decreases	1	
	as the increased number of large fishes results in <u>increase</u> <u>feeding/ consumption</u> of small fishes;	1	
	Total	7	

6ai	thick elastic layer of arteries is needed to withstand the high blood pressure in the artery;	1	
	elasticity enables the artery wall to <u>stretch and recoil/ spring back</u> , pushing the blood in spurts, preventing damage/ bursting of blood vessel;	1	
6aii	contraction and relaxation of muscle fibres in the arterial wall bring about constriction and dilation of the artery;	1	
	when artery <u>constricts</u> , lumen becomes <u>narrower</u> and <u>less blood flows</u> through per unit time/ when artery <u>dilates</u> , lumen becomes <u>wider</u> and <u>more blood flows</u> through it per unit time;	1	
6b	valves/ internal valves/ semi-lunar valves	1	
	Total	5	

	Section B	
7ai		4
	Graph of number of people worldwide who had HIV/ millions	
	37 36.7 36.5 36.1	
	9 36 35.5 35.5	
	8 36.5 9 36.1 36.1 37 35.5 38 31.5 38 31.5	
	© 35 © III 34.5 © III 34.5 © III 34.5 © III 34.5 © III 34.5 © III 34.5	
	© ± 33.533.2 0 33	
	ୁଷ୍ଟ 2010 2011 2012 2013 2014 2015 2016 ଜୁଞ୍ଚ	
	Axes labelled + all ticks labelled at equal intervals;	
	Best fit line + no shading + smooth curve; All points plotted accurately;	
	Maximise the size of grid provided;	
7aii	number of people worldwide who has HIV <u>increases every year</u> from 2010 to 2014;	1
	increase by 0.5 millions from 2010 to 2011 + consistent yearly	1
	increase by 0.6 millions from 2011 to 2016;	·
71.	number of people who had HIV is accumulative over the years;	1
7b	keep to one sex partner; males to wear a condom if they are not sure whether their partners	Any 3
	or themselves are infected with AIDS; do not abuse drugs or share instruments that could break the skin;	
	use sterilised or disposable instruments for acupuncture, ear- piercing or tattooing;	
	Total	10

8a	trees containing genes that makes them more resistant to fires survive longer compared to trees that cannot resist fires;	1	
	higher rate of reproduction of trees that can resist fires + natural selection;	1	
	resulting in increase genetic variation;	1	
	offsprings inherit beneficial traits that allows them to adapt to the environment;	1	
	after a few generations, trees with <u>resistance to fires increases</u> as only the desirable traits are passed down to the next generation;	1	
8bi	artificial selection is the method used to produce improved breed of plants and animals with desirable traits by selective breeding	1	
8bii	cows + increase production of good milk;	1	e.g. from TB
	soya bean plant + production of seeds with high oil content;	1	
8c	Social implications: May cause allergies in humans/ Easier and cheaper to produce medicine + more affordable + more patients can get access to them and be treated/ Higher risk of contamination by disease-causing microorganism present in animals/ Loss of biodiversity due to drop in population of animals or plants/ May be toxic or cancer-causing + modifying a single gene could result in alteration of metabolic processes producing unwanted toxins/ Ethical implications: Vegetarians or religious groups will object the use of medicine obtained from animals/ Morally wrong to exploit animals for medical research/ Deliberate creation of new combinations of genes that may be	1	
	used in chemical or biological warfare/ Total	10	
	Total		

E9a	2 copies of X chromosomes in chromosome 23 + female;	1	
	3 copies of chromosome 21 + Down's syndrome;	1	
	mutation caused <u>chromosome 21 to not separate</u> during <u>gamete formation</u> resulting an egg to have 2 copies of chromosome 21 + after fertilisation, zygote has 3 copies of chromosome 21 /	1	
	individual inherit one X chromosome from mother and one X chromosome from father;		
E9b	radiation and chemicals are mutagens that <u>increase the rate of</u> <u>mutation</u> + mutation will disrupt the normal functions of a cell;	1	
	individuals with <u>beneficial</u> mutation leave more offspring + frequency of <u>mutant allele</u> will increase in population of organism;	1	
	new traits may arise after many years + resulting in new species/ organisms with more favourable traits to survive and reproduce + evolution of a population;	1	
E9c	A fragment of DNA in human chromosome that contains the gene of interest is obtained + <u>restriction enzyme</u> cut restriction site of gene at the two ends of the gene to <u>produce sticky ends</u> ;		Cutting of insulin gene
	A <u>plasmid</u> from a bacterium is obtained + cut plasmid with same restriction enzyme + producing sticky ends complementary to the ends of the insulin gene;	1	Cutting of plasmid
	Mix the plasmid with the DNA fragment containing the gene of interest + bind to plasmid by the complementary base pairing between their sticky ends + DNA ligase to seal + forming a recombinant plasmid;	1	Formation of recombinant plasmid
	Mix recombinant plasmid with E.coli bacterium + apply temporary heat or electric shock to open up pores in the cell surface membrane of the bacterium for the plasmid to enter + forming a transgenic bacterium +	1	Formation of transgenic bacterium
	transgenic bacterium will use the new gene to make insulin + isolated and grown for mass production of human insulin + insulin has to be extracted and purified before use;	1	
	Total	10	

O9a	generally, farmland has a <u>greater number of samples</u> compared to in the cities;	1	
	number of samples is <u>greater when less than 5 different insecticides</u> were used/ number of samples is <u>zero in cities and significantly lower in farmland</u> when 5 or more different insecticides were used;	1	
	as the number of different insecticides used <u>increases</u> , number of samples <u>decreases</u> ;	1	
O9b	agricultural activities in farmland results in a greater number of samples recorded in farmland compared to cities;	1	
	greater concentration and frequency of use of insecticides in farmland compared to cities;	1	
	to kill and repel insects who feed in the crops;	1	
О9с	honeybee is important pollinators in agriculture;	1	
	decrease in population of honeybees will reduce the rate of pollination of plants that produce the crops;	1	
	decrease crop yield in the farmland as rate of reproduction of plants slows down;	1	
	decrease food production + reduce food sources to feed human population;	1	
	Total	10	