
 

1 (i) Find the derivative of 24 x with respect to x.    [1] 

 (ii) Given the differential equation
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2 (a) The point A has coordinates (3, a, b) where ,a b � .  Given that A lies on the  
  xy-plane and the magnitude of the position vector of A is 5, find the values of a 

and b.          [3] 
 
 (b) The real numbers c and d are such that the vectors d c  m i j k and 

c d  n i j k  are perpendicular to each other.  Show that  2
1c  m n . [3] 

 
 
  



[Solution]             
(a) Since (3, a, b) lies on the x-y plane, b = 0.   
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3 Given   2f z pz qz r    where p, q and r are complex numbers such that  f 1 2i .  

The equation  f 0z   has roots  1 i  and 1 2i .  Find p, q and r.  [6] 

              
  
[Solution] 

Since  f 0z   has roots  1 i  and 1 2i , 

       f 1 i 1 2i ,z p z z k      �     

Since  f 1 2i , 

     1 1 i 1 1 2i 2ip           

  i 2i 2ip   

2 2ip    

ip           

       f i 1 i 1 2iz z z        

       2i 1 i+1 2i 1 i 1 2iz z           

    2i 2 3i 1 3iz z           

   2i 3 2i 3 iz z           

 
Therefore, ip   , 3 2iq    and 3 ir        

 

  



4 Without the use of a graphic calculator, solve the inequality 
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.    [3] 

Hence find the solution to the inequality 
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 , where 0 2   . [3] 
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Replace  by cosx  , we have  
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5 A souvenir company received an order to produce a souvenir that must satisfy all of 

the following conditions:     
 

(1) The souvenir is a solid cuboid with a square base. 
(2) The souvenir is made using 1m3 of superior clay. 
(3) The external surface of the souvenir must be coated with a special-mixed glow 

paint. 
 
Find the dimensions of the souvenir, in m, such that the amount of special paint 
needed is the minimum.         [7] 

 
 



[Solution] 
Let the length of the square base be x m and the height of the cuboid be y m. 
Volume of cuboid = 1 m3  

2
2

1
1x y y

x
    ---(1)      

To minimise use of paint, surface area S, has to be kept at a minimum. 
22 4S x xy   ---(2)       

Sub (1) into (2): 
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When x = 1, 
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Therefore, the required dimension is 1m by 1m by 1m.  
 

6 A contagious disease was found to infect a village with a population of 10000 people. 
Let P, in thousands, be the number of infected people t days after the start of the 
outbreak. The disease spread at a rate that is proportional to the product of the number 
of infected people and the number of non-infected people. It was found that when P 
reaches half the initial population of the village, the disease is spreading at a rate of 
1000 people per day.  

Show that the spread of the disease can be modelled by the differential equation  

 2
25 5d

d 25

PP
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 .     [2] 

Given that 100 people are infected by the disease initially, find P in terms of t. [3] 
 
Explain what will happen to the village population in the long term.   [2] 

 

[Solution] 

 d
10

d

P
kP P

t
   

When P = 5,  



   d
1 5 10 5 1

d
1

25

P
k

t

k

   

 
   

 22 25 5d 10

d 25 25

PP P P

t

 
    

 22

1 1
d d

255 5
P t

P


    

1 5 5 1
ln          where  < 10 and  is arbitrary constant

10 5 5 25

2
ln '

10 5

P
t C P C

P

P
t C

P

       
     

 

2

5

10

tP
Ae

P



  where 'CA e  

 
2

5

2

5

2

5

10

10

1

t

t

t

P Ae P

Ae
P

Ae

 




    

When t = 0, 
100 1

1000 10
P   , 

1 10 1

10 1 99

A
A

A
  


      

2

5

2 2

5 5

10
e 1099

1
1 e 99 1

99

t

t t
P

e


  
 

 

As 
2

5,e 0
t

t
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Therefore, since number of infected people will eventually become 10 000, the whole 
village people will eventually be infected by the disease.   

 

  



7 A convergent geometric sequence of positive terms, G has first term a and common 
ratio r. 

 
Write down, in terms of a and r, an expression for the nth odd-numbered term of G. 
           [1] 
 

If the sum of first n odd-numbered terms of G is equal to the sum of all terms of G 

after the nth odd-numbered term, show that  2 2 12 1 0n nr r    . 

(i) Hence find the value of r when 5n  .     [3] 

(ii) In another sequence H, each term is the reciprocal of the corresponding term 

of G. If the nth term of G and H  is denoted by nu  and nv  respectively, show 

that a new sequence whose nth term is ln n

n

u

v

 
 
 

,  is an arithmetic progression.

          [4] 

 [Solution] 

 The nth odd numbered term would be 2 2
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 n nr r r   2 2 11 1  

n nr r    2 2 12 1 0  [Shown] 

 

When n  5 , we have r r  10 92 1 0  

So r  1 (NA convergent series) or .0 892    
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Letting the nth term of the new sequence be nT , we have 
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1
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   ln ln ln ln      1 2 2 1 2 2 2n nT T a n r a n r   

 ln r 2 , a constant   

 

Hence the new sequence is an arithmetic progression.  

 

 

 

 

 

 

 

8 The functions f and g are given by 

f : x  2 8 13x x  ,        x  � , x 4 , 

       g : x  a e x ,               x  � . 

(i) Show that 1f  exists and express 1f   in a similar form, stating the domain 
clearly.                 [3] 
 

(ii) Determine the largest integer value of  a such that fg exists.                       [2] 

Alternative: 
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(iii) For the largest value of a obtained in (ii), find fg(x) and state the domain and 
the range of fg.         [4] 

[Solution]  

(i) Any horizontal line y = k, k  � , cuts the graph at most once, therefore f is a one-one 

function. Thus, 1f  exists.     

 

Let y = 2 8 13, 4x x x    

         =  2
4 3x    

   4 3x y         

   4 3x y     or  4 3x y    (rej 4x  )  

 1f  : x  4 3x  ,    3x      

 

(ii) For fg to exist,  g fR D =  , 4    

 

 

 

 

 

 

 

          Largest integer value of  a = 4     
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Provided you are confident with 
your Complete the Square.  



 

9 Given that ln exy  , show that  
2

2

d d
e 1

d d
xy y

x x
   .     [2] 

(i) Find the Maclaurin’s series for ee
x

y  , up to and including the term in 3x . 

          [4] 

(ii) Find the first three non-zero terms of the Maclaurin series for ee
xxy  .   

Hence find in terms of e, the approximate area bounded by the curve ee
xxy  , 

the x-axis, the y-axis and the line 0.5x  .     [4] 

 

[Solution] 

ln exy    

 Differentiate wrt x, 
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The region R is bounded by the x-axis, the y-axis, the line y = 1 and the curve lny x  

where , 0x x � . 

The area of R may be approximated by the total area, A, of n rectangles each of height 
1

n
, as shown in the above diagram.  

Show that 1

1 1 e

1 e n

A
n

   
 

.         [4] 

 Another finite region S is bounded by the x-axis, x = e  and the curve lny x  where

, 0x x � . 

Explain how A can be used to approximate the area of region S and state, with a reason, 
whether it is an underestimation or overestimation.     [3] 

 Find the exact volume of the solid formed when region S is rotated completely about 
the y-axis.          [3]  

 [Solution] 

ln yy x x e     

 Total area of the rectangles = 

1

1 2 1
0

:common ratio ;first term1;  terms

1
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n n n
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 Area of region  = 1 e Area of region eS R A      

 From the diagram, A is an underestimation for region R. Hence using e A  to 
approximation region S will be an overestimation.   

 Required volume 
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11(i) Prove by the method of induction that  

       2
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   .    [4] 

 

   (ii) It is given that   4f r r . Show that 

        3 2f f 1 1r r ar br ar      , 

for constants a and b to be determined. Hence find a formula for 3

1


n

r

r , leaving your 

answer in a fully factorised form.       [8] 
[Solution] 

(i) Let nP  be the statement   2
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Since 1P  is true and 1 true   truek kP P , then by method of mathematical induction, 
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   is true for �n .   

(ii) Given that    4f r r ,  

    4 4 3 2f 1 1 4 6 4 1r r r r r r          

 3 24f ( ) f ( 1)  --- (6 4 1 *)r r rr r         

  where 4  and  6a b   . (Shown)   
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12 Two planes 1p and 2p have equations 3ax y z b    and 4 2x y bz a  

 respectively.  They intersect at the line l which contains the point  1,0, 1A  . 

(i) Find the values of a and b.       [2] 

(ii) Without the use of a graphic calculator, find a vector equation of the line l. 
            [2] 

Given that the point ( 4, 6,12)N   is the foot of perpendicular from point  1, ,B c d  

to the line l, show that 6 13 217c d   .      [3] 

Another plane 3p  is parallel to the plane 2p and contains B.  Given that the distance 

between planes 3p  and 2p  is 
5

21
.   Find the values of c and d.   [5] 

Hence, write down 2 possible equations of plane 3p .     [2] 

 [Solution] 

(i) Two planes 1p and 2p  contains the point  1,0, 1A  : 

     1 3 0 1 1a b a b        ----(1) 

     4 1 0 1 2 2 4b a a b       ----(2)     

Solving (1) and (2): 1; 2a b       

 (ii) 

Direction vector of the line l = 

1 4 5

3 1 6

1 2 13

     
             
          

    

Vector equation of the line l : 

1 5

0 6

1 13


   
       
       

r  for  R   

 (iii)  Given ( 4, 6,12)N   is the foot of perpendicular from point  1, ,B c d  to the line l,   

5

6

13

BN

 
    
  


 



4 5

6 6 0

12 13
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5 4 5

6 6 6 20 36 156

13 12 13

OB

     
                  
           


  

1 5

6 212

13

c

d

   
         
      

     

5 6 13 212c d          

6 13 217c d    (shown)     

Plane 3p , parallel to plane 2p and contains B , is of distance 
5

21
 units from plane 2p : 

4

1

2 5

16 1 4 21

BN

 
 
 
 
  
 


�

   

4 1 4

6 1 5

12 2

c

d

       
               
            

�    

   16 6 24 4 2 5c d            

2 7c d      or  2 3c d    

Consider 

6 13 217c d   ----(1) 

2 7c d   ----------(2)    

Solving (1) and (2): 21; 7c d      

Also 

6 13 217c d   ----(3) 

2 3c d  -----------(4)     



 

Solving (3) and (4): 15.8; 9.4c d      

Equations of plane 3p  are 

4 1 4

1 21 1 4 21 14 3

2 7 2

     
                
     
     

r� �     

and 

4 1 4

1 15.8 1 4 15.8 18.8 7

2 9.4 2

     
               
     
     

r� �     


