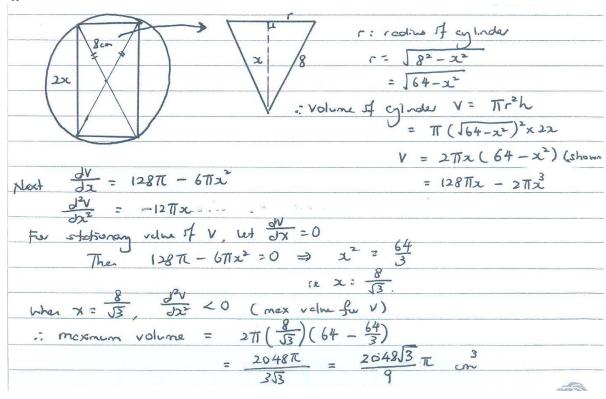
Solutions to Tutorial 5B: Tangents and Normals


Basic	Masterv	Questions

Basic Wastery Questions	
Q1(a) $y = \frac{\ln(x^2 + 1)}{x^2}$ at (1, ln2)	alc) x=a(1+ t)
$\frac{dy}{d\pi} = \left(\frac{\chi^2}{\chi^2 + 1}\right) - \ln(\chi^2 + 1) \cdot 2\chi$ $\left(\chi^2\right)^2$	$\frac{dx}{dt} = \frac{q}{t^2}$
$(\chi^2)^2$	y = a (t-t2)
$= \frac{2}{\chi(\chi^2+1)} - \frac{2\ln(\chi^2+1)}{\chi^3}$	$\frac{dy}{dt} = a(1 + \frac{2}{t^3})$
when $\gamma = 1$, $\frac{dy}{d\gamma} = 1 - 2\ln 2$	dy dy/dt
2. Eq. of tengent is $(y - \ln 2) = (1 - 2h^2)(x - 1)$	2 .
$y = (1-2\ln 2)\pi + 3\ln 2 - 1 *$	$= \alpha \left(1 + \frac{7}{4}\right)$ $= \frac{9}{4}$
Eq. If normal is $y - \ln 2 = -\frac{1}{1 - 2\ln 2} (x - 1)$ $y = \frac{1}{2\ln 2 - 1} x + \ln 2 + \frac{1}{1 - 2\ln 2} $	$= -(1+\frac{7}{4})^{\frac{2}{3}}$
$y = \frac{1}{2\ln 2 - 1} $ $7 + \ln 2 + \frac{1}{1 - 2\ln 2} $	$= -t^2 - \frac{2}{t}$
	When t=2, dy = -4-1=-
Q(b) $x^3 + y^3 = 9$ at (1,2) Diff week $x = 3x^2 + 3x^2 \frac{dy}{dx} = 0$	When $t=2$, $\gamma = \frac{3}{2}a$, $y = \frac{7}{4}a$
Diff wtx: $3x^{2} + 3y^{2} = 0$ $\frac{dy}{dx} = \frac{-3x^{2}}{3y^{2}} = -(\frac{x}{9})^{2}$	i. Eq. of toyat is
When $x=1$, $y=2$, $\frac{dy}{dx}=-(\frac{1}{2})^2=-\frac{1}{2}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
is Egg of tengent is	tog 2 of normal is
is Eq.2 if tengent is $y-2:-4(x-1)$ $y=-4x+4$ Eq.2 if normal is	$y - \frac{7}{4}a = \frac{1}{5}(x - \frac{3}{5}a)$
Egz of normal is	y= 1 x + 29 a
$y-2 = -\frac{1}{(-\frac{1}{2})}(x-1)$ $y-2 = 4(x-1)$	
y-2 = 4(x-1) y = 4x - 2 *	
	I

Solutions to Tutorial 5C: Rate of Change, Maxima and Minima

Basic Mastery Questions Pg 2 Given 2TT-+ 2TT-h = 100 Q1 2Th = 100-2Th Then whene V: Tr2h Q2

4.

Solutions to Tutorial 5D:

Maclaurin's Series

Basic	Mastery Questions
	$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{r+1}}{2} + \dots + (-1 < x \le 1)$
QI.	$\ln(1+x) = x - \frac{1}{2}$
	So, 2)2
	$ n(1-2\chi^2) = (-2\chi^2) - \frac{(-2\chi^2)^2}{2} + \cdots$
	$= -2x^2 - 2x^4 + \dots$
	222 4 1
	where $-1 < -2x^2 \le 1$
	$-\frac{1}{2} \le \chi^2 < \frac{1}{2}$
	$\Rightarrow 0 < x^2 < \frac{1}{2}$
	$\Rightarrow 0 < x^{2} < \frac{1}{2}$ $\Rightarrow -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} \neq$
02.	y = sin(ln(1+x))
	(i) $\frac{dy}{dx} = \cos(h(1+x)) \cdot \frac{1}{1+x}$
	dx
	$\Rightarrow (1+x) \frac{dy}{dx} = \cos(\ln(1+x))$
	(i) Diff (i) wt x agen:
	$(1+x) \frac{d^2y}{dx^2} + (\frac{dy}{dx})(1) = -\sin(\ln(1+x)) \cdot \frac{1}{1+x}$
	(HX) = 1 (dx) (1)
	$\Rightarrow (1+x)^2 \frac{d^2y}{dx^2} + (1+x) \frac{dy}{dx} = - \sin(\ln(1+x)) = -y$
	$\frac{1}{(1+x)^2} \frac{d^2y}{dx^2} + (1+x) \frac{dy}{dx} + y = 0.$
	(siv) Dff (si) wt x agen:
	$(1+x)^{2} \frac{d^{3}y}{dx^{3}} + \frac{d^{3}y}{dx^{3}} (2)(1+x) + (1+x) \frac{d^{3}y}{dx^{3}} + (\frac{dy}{dx})(1) + \frac{dy}{dx} = 0$
	(1+2) dx dx dx
V	Non when x=0, y= sin(ln1) = sin0=0
	Now, when $x=0$, $y=\sin(\ln 1)=\sin 0=0$ Then $1\frac{dy}{dx}=\cos(\ln(13)=1\Rightarrow \frac{dy}{dx}=1$
	$3^{2}b \text{ m/b (i)} \qquad \frac{d^{2}y}{dx^{2}} + \times + 0 = 0 \Rightarrow \frac{d^{2}y}{dx^{2}} - $
	Sub into (iii) $\left \frac{d^3y}{dx^3} + (-1)(2) + 1(-1) + 1 + 1 = 0 \Rightarrow \frac{d^3y}{dx^3} = 1 \right $
	9X3 4X3
	: The Maclaurin's series for y is $y = 0 + 1 \cdot x + (-1)\frac{x^2}{2!} + (1)\frac{x^3}{3!} + \cdots$ $= x - \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots$ (up to x^3 term)
	$0 + 1 \cdot x + (-1) \frac{x^2}{x^2} + (1) \frac{x^3}{x^3} + \cdots$
	21 31 3
	= x - 1x + 6x + (up to 7 Tom)

Additional Practice Questions (H2 Chapter 5 Applications of Differentiation)

	x= t2+1, y2 t3-t	
	dy = 2t , dy = 3t2-1	(b) let dy = dx
	dy ayldt 3t2-1	⇒ dyldt dxldt = 1
(a)	When t=1, x=2, y=0	⇒ dy = 1
	$\frac{dy}{dx} = \frac{3-1}{2} = 1$ $\therefore Eq: f + engent is$	het 3t2-1 = 1
	y-0=1(x-2)	3t2-2t-1= 0
	y= x-2.	(3t+1)(t-1)=0 ⇒ t=-3 or
1		

2 (a) Given $x^2 - 2xy + 2y^2 = 4$,	b) x= t2, y=t3
diff wit is:	b) $x=t^2$, $y=t^3$ $\frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{3t^2}{2t}=\frac{3}{2}t$
2x - (2x 3x + y(2)) + 4y 3x = 0	i Eq ? If target of pt where t= p
$\Rightarrow (4y - 2x) \frac{dy}{dx} = 2y - 2x$	$y - p^{3} = \frac{3}{3}p(x - p^{2})$
$\Rightarrow \frac{dy}{dx} = \frac{2(y-x)}{2(y-x)}$	$2y - 2p^3 = 3p\pi - 3p^3$
dx 2(2y-x)	$= 2y - 3px + p^3 = 0$
= 8-4	Next, if tangent passes thro' (-3, -5
x-2y *	$2(-5) - 3p(-3) + p^3 = 0$
When target is 11 to x-oxis, dx =0	3 + 9p -10 = 0
=> x-y=0 => x=y	(p-1)(p+p+10)=0
$\therefore x^2 - 2x^2 + 2x^2 = 4$	=> p=1 (Note for p2+p+10=0
x ² = 4	$D = 1^2 - 4(1)(10) < 0$
n = ±2	when p=1, t=1 => x=1, y=1
i. The pts are (2,2), (-2,-2)	The only point is (1,1)
	- Control of the Cont

3 A = 2 cm2 => dx = 0.025 cm/s l = 20x, so dl = 20 dx = 20x 0.025 (b) Volume If cylinder = $V = (x)(20x) = 20x^2$ $\Rightarrow \frac{dV}{dx} = 40x$ So $\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dx}{dt}$ $= \frac{12-5}{5 \text{ cm}/s} \text{ at the instant when } X:5 \text{ cm.}$ (c) Let $r: readius \ \text{if } cy \ \text{Ind} u$.

Then $\pi r^2 = A = x$ Different L. Then $\pi r^2 = A = x$ Different t: $2\pi r^2 \frac{dr}{dt} = \frac{dx}{dt}$ when x = 5, $\pi r^2 = 5 \Rightarrow r^2 = \sqrt{\frac{5\pi}{\pi}}$ i. $\frac{dr}{dt} = \frac{dx}{dt} = 0.025$ $\frac{dr}{dt} = \frac{1}{2\pi r^2} = \frac{1}{2\pi r^2} = \frac{1}{2\pi r^2}$ 4 $\frac{dy}{dt} = \frac{\cos x}{2} \left(-\sin x\right) \frac{dx}{dt} + e^{2} \left(2\sin x\right) \left(\cos x\right) \frac{dx}{dt}$ $\frac{dx}{dt} = -4 \text{ with } s$, $x = \overline{1}$, $\frac{dy}{dt} = e^{\cos \frac{\pi}{2}} \left(-\sin \frac{\pi}{2} \right) \left(-4 \right) + e^{\frac{1}{2}} \left(2\sin \frac{\pi}{2} \right) \left(\cos \frac{\pi}{2} \right) \left(-4 \right)$

= 4 units/s.

= e (-1)(-4)

	y= \(\sqrt{1+8e^{\frac{1}{3}}} \) then \(y^2 = 1 + 8e^{\frac{1}{3}} \)
(1)	2y dy = 8ex
	y dy = 42 (shown!)
	Diff web x again: y dy + (dy x dy) = 4ex
	0 0%
	$y \frac{d^3y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 4e^{x^2}$
	Diff wet x egen: $y \frac{d^3y}{dx^3} + \left(\frac{d^2y}{dx}\right) \left(\frac{dy}{dx}\right) + 2\left(\frac{dy}{dx}\right) \left(\frac{d^2y}{dx^2}\right) = 4e^{x}$
	How, when x=0, y= \(\int 1+8e^0 = 3 \)
	Atso, $\frac{dy}{dx} = \frac{4}{3}$, $\frac{d^2y}{dx^2} = \frac{28}{27}$, $\frac{d^3y}{dx^3} = \frac{28}{81}$.
	The modavin's series for y in seconding powers of x is
	$y = 3 + \frac{4}{3}x + \frac{20}{27}x^2 + \frac{28}{81}x^3 + \dots$
	21. 31
	= $3 + \frac{4}{3} \times + \frac{10}{27} \times^2 + \frac{14}{243} \times^3 + \dots$ (shown!).
(v)	Next, $(3+\frac{4}{3}\chi+\frac{10}{27}\chi^2+\frac{14}{243}\chi^3)(3+\frac{4}{3}\chi+\frac{10}{27}\chi^2+\frac{14}{243}\chi^3)$
	$=$ 9 + 4x + $\frac{10}{9}$ x ² + $\frac{14}{81}$ x ³
	$+ 4x + \frac{16}{9}x^2 + \frac{40}{81}x^3$
	$+\frac{10}{9}\chi^{2} + \frac{40}{81}\chi^{3}$
	+ 14 3 +
	= 9+8x+4x2+ \frac{4}{3}x3+ (up to x3 tem).
(i)	Note that $y = \sqrt{1+8e^x}$. So $y^2 = 1+8e^x$ expension series for e^x .
	So y2 = 1+8ex
	$\int_{2}^{3} \int_{2}^{2} \frac{1+32}{1+32} + \frac{3}{31} + \dots$
	$= 9 + 8x + 4x^{2} + \frac{4}{3}x^{3} + \cdots$
	Thus, the result in (i) (which is y') can be used as
	a check on the correctness of the first 4 terms in the
	seros of y.

	4	17
	Given that $y = (2 - 2^{2x})^{\frac{1}{4}}$,	
(1)	$\frac{dy}{dx} = \frac{1}{4} \left(\frac{2x}{2-2} \right)^{-\frac{1}{4}} \left(-2\frac{2x}{2} \right)^{-\frac{1}{2}} = -\frac{1}{2} e^{x} \left(2 - e^{x} \right)^{-\frac{1}{4}}$	Ø
	Then $(2-e^{2x})^{\frac{1}{4}} = -\frac{1}{2}e^{2x}(2-e^{2x})^{-\frac{1}{2}}$	
	$y \frac{dy}{dx} = -\frac{1}{2} e^{2x} (2 - e^{2x})^{-\frac{1}{2}}$	
	1 2 2 (2 - 2)	-3 2x)
	Diff with again: $y \frac{dy}{dx^2} + (\frac{dy}{dx})(\frac{dy}{dx}) = \frac{1}{2} e^{2x} (-\frac{1}{2})(2 - e^{2x})$ $+ (2 - e^{2x})^{-\frac{1}{2}} ($	(-12) -e ^{2x})
	Then $y dx^{2} + \left(\frac{dy}{dx}\right)^{2} = -2\left(-\frac{1}{2}e^{2x}\left(2-e^{2x}\right)^{-\frac{3}{4}}\right)^{2} - 4$	2x (2-2x
	$= -2\left(\frac{dy}{dx}\right)^2 + 2y\frac{dy}{dx}$	
	(from 1) (from 2)	
	Thus, $y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 2\left(\frac{dy}{dx}\right)^2 = 2y \frac{dy}{dx}$	
	: y d2y + 3 (dy) = 24 dy (shown!)	
Ct.)		
27	Then $\frac{dy}{dx} = -\frac{1}{4}$ $\frac{d^2y}{dx^2} = -\frac{7}{4}$	
	Next, when $x = 0$, $y = (2 - e^{0})^{\frac{1}{4}} = 1$. Then $\frac{dy}{dx} = -\frac{1}{2}$, $\frac{d^{2}y}{dx^{2}} = -\frac{7}{4}$. The maclowin's series of $y = (-\frac{7}{4})x^{2} +$	
	$y = 1 + (-\frac{1}{2})^{x} + \frac{(-\frac{1}{2})^{x}}{2} + \dots$	
	= 1- 1x - 8x + Cup to term in	ײ).
	(ii) Now, $e^{2x}(2-e^{2x})^{-\frac{3}{4}} = e^{2x}(2-e^{2x})^{\frac{4}{4}}$	
	2 - 2 0	
	$= 2^{2x} \left(2 - 2^{2x}\right)^{\frac{1}{4}} \left(2 - 2^{2x}\right)^{-\frac{1}{4}}$	
		2-1
	If x is sufficiently small, $\frac{2x}{2}(2-e^{2x})^{-\frac{3}{4}} = (1+2x)(1-\frac{1}{2}x)(2-(1+2x)^{-\frac{1}{2}}$	1))
	$\approx (1+2x)(1-\frac{1}{2}x)(1-2x)^{-1}$	
	$ = (1+2x - \frac{1}{2}x)(1+2x) $ $ = (1+\frac{2}{3}x)(1+2x) $	
	$= (1+\frac{3}{2}x)(1+2x)$ $= 1+\frac{3}{2}x+2x+\cdots$	
	$= 1 + \frac{7}{2} \times .$	
	7 1 2 7 1	

$$\cos(\overline{4} + x) \cos(\overline{4} - x) = \left(\cos \overline{4} \cos x - \sin \overline{4} \sin x\right) \left(\cot \overline{4} \cos x + \sin \overline{4} \sin x\right)$$

$$= \frac{1}{\sqrt{2}} \left(\cot x - \sin x\right) \cdot \frac{1}{\sqrt{2}} \left(\cot x - \sin x\right)$$

$$= \frac{1}{\sqrt{2}} \left(\cot x^2 x\right)$$
If $x = 1$ is sufficiently small for x^3 & higher powers if $x \neq 1$ be neglected as $\frac{1}{\sqrt{2}} \left(1 - \frac{1}{\sqrt{2}}\right)$

$$= \frac{1}{\sqrt{2}} \left(1 - \frac{1}{\sqrt{2}}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right)$$
Hence $\cot(\overline{4} + x) \cot(\overline{4} + x) = \frac{1}{\sqrt{2}} \left(1 - 2x^2\right)$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{(-1x^2)}{x^2}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

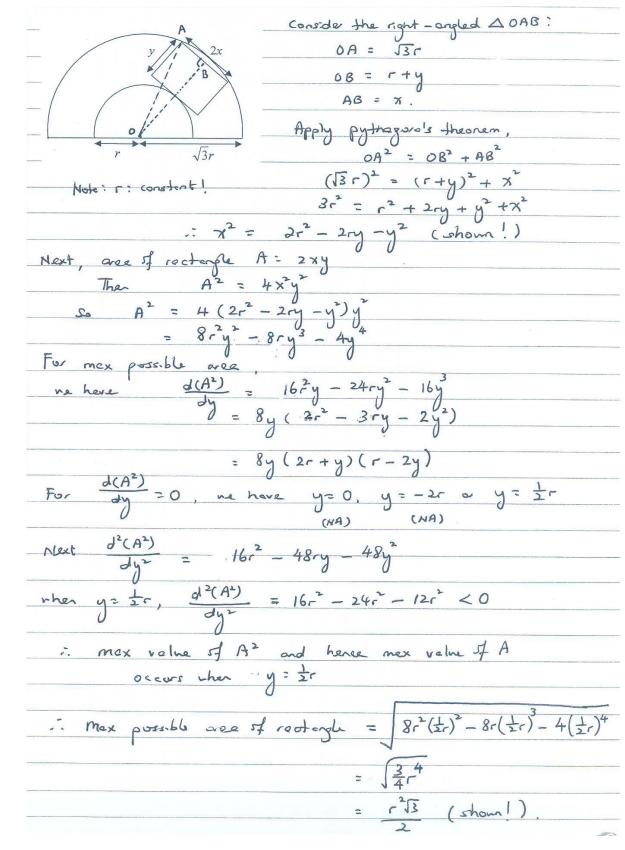
$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

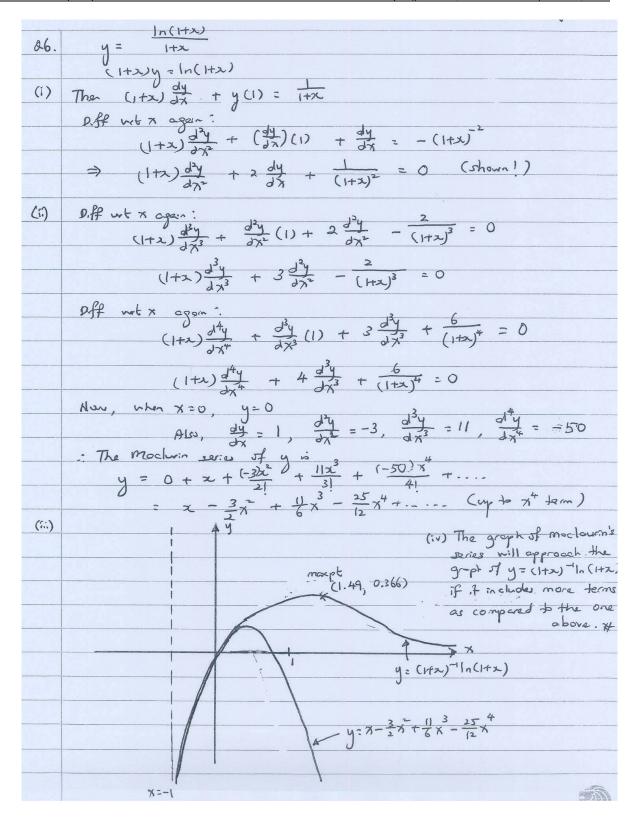
$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$


$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$


$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

$$= \frac{1}{\sqrt{2}} \left(1 - 2x^2\right) \left(1 - \frac{x}{2} + \frac{x^2}{4}\right)$$

