

Data-Based Questions

In Support of Practices of Science

Science is more than just acquiring knowledge. It includes understanding the nature of Science, and how it is generated, established, and communicated. DBQs typically show varied types of data presentation and is an opportunity for students to demonstrate their ability to digest data, to apply knowledge in the real-world context, and to recognise technological limitations/trade-offs in each situation.

Assessment Style

DBQs will appear at the end of Paper 2. The context is likely novel and may involve concepts from beyond the syllabus. There will be sufficient contextual information provided. The DBQ(s) will constitute 20 – 25 marks (out of the total 80 marks in Paper 2). Therefore, we should reserve the last 30 minutes for tackling DBQs.

Paper	Type of Paper	Duration	Weighting (%)		Marks	
1	Multiple Choice	1 h	15		30	
2	Structured Questions	1 h 30 min	23	20	60	80
2	- Data-Based Question(s)	30 min	7	- 30	20	
3	Longer Structured Questions	2h	35			80
4	Practical	2h	16	20	44	55
	- Planning Question	30 min	4	20	11	

What to expect for a DBQ

We should expect the unexpected. Cliches aside, note that the following is non-exhaustive:

Possible Types of Data	Skillset Needed				
Knowledge from	Linearisation of equations				
within syllabus	 Selection and/or justifying choice of graph axes 				
 Paragraphs and 	Calculation of constants				
prose	Verification of validity for proposed relationships				
 Novel equations 	Graph-drawing				
Tables	Figure / Diagram sketching				
 Graphs 	 Extracting and using relevant info 				
Statistics	 Interpreting of meaning behind equations and/or 				
	quantities in an equation				
	Weighing pros and cons				
GraphsStatistics	 Extracting and using relevant info Interpreting of meaning behind equations and/or quantities in an equation Weighing pros and cons 				

Also, expect lengthy questions. We provide a few past-year DBQs to illustrate:

SG 2017: Solar-powered Aircraft (23 marks across 7 pages)

SG 2019: Gravitational Waves (24 marks across 5 pages)

SG 2020: F1 Tyres (24 marks across 6 pages)

SG 2021: X-rays (22 marks across 5 pages)

To get ourselves familiar with DBQs, we will go through a few lecture examples. We will be deliberately explicit in highlighting the type of skills being examined when developing our answers.

We will not be going through the questions in full. Instead we selected a few interesting interesting examples that show varied types of data.

Lecture Example 1: Analysis of braking of a vehicle

	Skills
Modern vehicles are provided with different types of brakes. In cars, the foot brake is the most important with respect of control and safety of a vehicle while the hand	Extract info
<mark>brake</mark> is used as a reserve brake.	Brake 1: foot
One of the principal braking parameters of a vehicle is the deceleration <i>a</i> . This criterion should satisfy the following condition	Brake 2: hand
a ≥ [0.10 + 0.85 (φ − 0.20)] g	constant × g
where φ is the coefficient of cohesion and g is the acceleration due to gravity.	factors: wheel
The values of the deceleration of braking calculated according to the formula depend on the physical features of the wheel and road friction.	(tyres) and road condition
In reference books for experts' examination of traffic accidents as well as in scientific references on dynamics of vehicles, the provided value of coefficient of cohesion of tyres with dry asphalt is $\varphi = 0.80$. The value of the coefficient of cohesion equal to 0.80 may be applicable only to old cars and tyres produced about the year 1980. For the present-day cars, the maximum coefficient of cohesion φ is between 1.00 to 1.20, if braking takes place on dry asphalt.	typical values of φ
The anti-lock brake system (ABS) is required to ensure distribution of braking forces between the wheels to prevent the wheels from locking and therefore causing the car to skid. The majority of modern vehicles are equipped with ABS, and their real braking distance is close to the theoretically calculated one based on the maximum	ABS prevents skidding deceleration
values of the coefficient of cohesion. So, the deceleration of such vehicles may be close to $g = 9.81 \text{ m s}^{-2}$. For vehicles without ABS, the deceleration will be smaller.	close to g
 (a) (i) Calculate the minimum deceleration of present-day cars with ABS while braking on dry asphalt. [1] 	apply novel equation
<i>a_x</i> = [0.1 + 0.85(1.0 − 0.2)] <i>g</i> = 7.65m s ⁻²	
(ii) Assuming a car experiences constant deceleration during braking, calculate the maximum braking distance for a present- day car travelling at 50 km/h.	use existing knowledge (kinematics)
$v^2 = u^2 + 2as$ $0 = \left(\frac{50 \times 10^3}{3600}\right)^2 + 2(-7.65)s$ s = 12.6 m	

	(iii) State and expla while braking or	in whether the b wet asphalt.	raking distance of a	vehicle will change [1]	deduce
min bra	imum deceleration <u>de</u> king distance will <u>incr</u>	ecrease as <u>frictior</u> ease	<u>ı reduced between ty</u>	re and wet surface	logically
1. 2. 3.	 (iv) Suggest two di deceleration wh driver/passenger ma tailgating (less mode tyres wear out soone 	sadvantages of en braking if trave y experience disc ern) vehicles may er	modern vehicles tha elling on an expressw comfort (carsick) trave not brake in time and	at have very large ay. [2] elling in vehicle collide	deduce logically
(b)	A car has two import foot brake is operate When a car has a br 1. maximum brakir 2. maximum brakir Typical data for a ca	ant braking deviced by foot and the ake test, two sets ng force on wheel ng force produced r of mass 900 kg	es and they function hand brake is operat of measurements ar s produced by operat by operating the har are as follows.	independently. The ed by hand. e made: ing the foot brake. id brake.	
		description	maximum braking force / N		
		foot brake	6700		
		hand brake	2000		
	In order to detern applied to a chart (o chart has three vertion	mine if the bra called a nomogra cal lines marked v	akes are satisfacto m) like the one shov vith scales.	ry, the data are vn in Fig. 1.1. This	

The central vertical line is for the maximum braking force. The left line is for the mass of the car. The right line is for the braking efficiency and the stopping distance from an initial speed of 20 m s⁻¹. The braking efficiency E is defined by the equation line represents

 $E = \frac{\text{deceleration of car}}{\text{acceleration of free fall}} \times 100$

As an example of the use of this chart for the car of mass 900 kg, the figures in the table show a maximum braking force for the foot brake of 6700 N. The point A corresponding to the mass and the point B corresponding to the braking force are joined to give a straight sloping line. This line is extended to cut the braking efficiency scale at the point C, and shows that in this particular case, the stopping distance S from a speed of 20 m s⁻¹ is about 27 m.

- (i) On Fig. 1.1, draw a line to represent results of the hand brake test on the car of mass 900 kg.
- (ii) From Fig. 1.1, determine the braking efficiency corresponding to hand brake test. [1]

deduce that

each straight

a particular car of a particular mass with a

particular

braking force

and how the

performance will turn out as

braking

a result

	eu JUNI											9749(2023) H2 Physics Data-based Questions
	(iii)	Calculate efficiency d	the ecele	decele <i>E</i> 22.5 eration	ration = $\frac{de}{acc}$ = $\frac{dec}{acc}$ = 2.21	correspo eceleration celeration 9.81 1 m s ⁻²	nding to on of car of free fa <u>of car</u> × 1	this	value)	of I	praking [1]	do not use $a = \frac{F}{m} = \frac{2000}{900}$ $= 2.22 \text{ m s}^{-2}$ though it gives same answer to 2 s.f. Qns stated to work with efficiency.
	(iv)	Show that brake and 20 m s ⁻¹ .	the c	decelera nd brake <i>F</i> _{foot} 6700 +	tion is e are a + F _{hand} - 2000 a	approximation applied to = ma = 900a = 9.67 m s $\simeq 9.7 m s^{-1}$	ately $g = 9$ stop a 9 s ⁻² (2 s.f.)	9.7 m s 900 kg	s ⁻² whe car o	⊧n bo f sp	oth foot eed of [1]	use existing knowledge (forces)
(c)	(v) Now	Suggest v 1. driver not re 2. car m hand v consider	vhy it shou lease ay loo brake	is not a uld have hand to ck up ar e at the s of mass	dvisab both h o use h nd skid same t	le to use t hands on s handbrake l; not desig time / ABS	he braking steering w gned for us does not	; techn heel sing bc apply ximum	ique in oth foot to hanc	(b)(bral d bra	iv). [1] ke and ike	deduce logically
	Stop			E / N			s/m	1]			
		ł		2000	·		99.0					
		-		4000	,)		66.0					
		F		5000)		54.0					
		ŀ		6000)		45.0					
		-		7000)		37.5					
		_		8000)		32.5					
		F		1000	0		27.0					
		_		1200	0		23.0					
		L			F	Fig. 1.2			J			

Fig. 1.3

	9749(2023) H2 Physics Data-based Questions
(iii) Use Fig. 1.3 to determine the work done when the maximum braking force is 9000 N. State any assumptions made in your calculations. [2] assume constant braking force throughout deceleration work done = $Fs = (9000)(29.5) = 2.66 \times 10^5$ J	graph work: read points accurate to half smallest square
(d) (i) A passenger of mass 70 kg was not wearing a seat belt and was sleeping at the front seat of a car. The car of mass 1300 kg was travelling at 20 m s ⁻¹ when a maximum braking force of 12000 N was applied on it.	Extract info
Using Fig. 1.1 and the equation for braking efficiency, determine the minimum force that the passenger would have to apply to prevent himself from flying off the seat.	also, the last parts are each question are
Show your working clearly.	usually more
car of mass 1300 kg, braking force of 12 000 N, efficiency is 87.5% $E = \frac{\text{deceleration of car}}{\text{acceleration of free fall}} \times 100$ $87.5 = \frac{\text{deceleration of car}}{9.81} \times 100$ $\text{deceleration} = 8.58 \text{ m s}^{-2}$ $F_{\text{on passenger}} = m_{\text{passenger}} a_{\text{car}} = (70)(8.58) = 601 \text{ N}$	demanding in order to differentiate exam candidates further
(ii) Suggest whether the passenger would be able to prevent himself from flying off the seat. [1] v = u + at 0 = 20 + (-8.58)t t = 2.33 s unlikely; passenger only has about 2 seconds to react from sleeping condition to exerting a force that is nearly his whole body weight	
Lecture Example 2: Blackbody Radiation	
An object that is at a higher temperature than its surroundings loses thermal energy by emitting electromagnetic radiation. For loss of thermal energy as electromagnetic radiation, the intensity I_{λ} of the emitted radiation of wavelength λ varies with wavelength λ . Fig. 2.1 shows the variation of I_{λ} with λ for the body when it is at 1000 K. The distribution of intensity is different at different temperatures, as shown in Fig. 2.2	Skills

- use existing knowledge (waves)
- (a) (i) On the horizontal axis of Fig. 2.2, indicate with the letter V a wavelength that is in the visible region of the electromagnetic spectrum. [1] somewhere between 400 nm 700 nm
 - (ii) Hence suggest why, at a temperature of 1100 K, the object would glow with a red colour. [1] intensity of longer, visible wavelengths at red end from 600-700 nm is much more those below 600 nm.

object will appear predominantly red.

(b) At any temperature *T*, the graph of Fig. 2.2 shows a peak corresponding to a wavelength λ_{max} and an intensity I_{max} . Data for *T* and λ_{max} are shown in Fig. 2.3.

Т/К	$\lambda_{ m max}$ / nm	$T\lambda_{max}$ / K nm
600	4830	2898000
700	4140	2898000
800	3610	2888000
900	3210	2889000
1000	2900	2900000
1100	2630	2893000

lab skills (i) Without drawing a graph, show that $T\lambda_{max} = \text{ constant}$ and determine the (verifying constant. [3] average $T\lambda_{max}$ = 2894000 K nm constants) values of $T\lambda_{max}$ are consistent at 2900 000 K nm (to 2 s.f.) $\frac{\text{max} - \text{min}}{\text{mallest value}} \times 100\% = \frac{2900000 - 2893000}{2893000} \times 100\% = 0.242\%$ largest percentage deviation in the values is less than 1% relationship likely valid (ii) Hence determine the wavelength for maximum intensity at a temperature T of 1200 K. [2] average constant = 2894000 K nm $\lambda_{\max} = \frac{\text{constant}}{T} = \frac{2894000}{1200} = 2412 \text{ nm}$ (c) The total intensity of emitted radiation from a particular body at temperature T is I_{tot} . Fig. 2.4 shows the values of Ig(T/K) plotted against the corresponding values $lg(I_{tot} / W m^{-2})$.

Fig. 2.4

(d) Using your answer to (b)(ii), sketch on Fig 2.2, the variation with wavelength λ for a temperature of 1200 K.

start at origin, intensity consistently higher than graph for 1100 K, peak at λ_{max} = 2412 nm, shaper peak than 1100 K graph, height approx ×3.2 of 900 K graph

- (e) The radiation emitted by a hot body may be used as a means of determining the temperature of the body.
 - (i) Suggest and explain a property of the radiation that could be used for this purpose. [2]

peak wavelength λ_{max} because the higher the temperature,

the shorter the wavelength

 (ii) Suggest one advantage and one disadvantage of this method for measuring temperature. [2]

advantage: non-contact measurement of temperature disadvantage: not suitable for temperatures below 600K, intensity is weak so detection may not be accurate

Lecture Example 3: Explosion Fireballs

A serious hazard for fire-fighters is the explosion of containers of 'liquefied gas' (butane) that have been heated in a fire. When the butane suddenly burns in an explosion, the fire spreads very rapidly in the form of a spherical fireball of increasing radius that is at very high temperature. In order to study such fireballs, a series of experiments is carried out. Some butane of volume 12.5×10^{-3} m³ is put in a sealed container and is then heated until it explodes. The variation with time *t* of the radius *R* of the fireball is determined. The results are shown in Fig. 3.1.

Fig. 3.1

Skills

	9749(2023) H2 Physics Data-based Questions
(a) Use Fig. 3.1 to	question
(i) describe, without any calculation, the variation with time of the rate at	identified
which the radius <mark>of</mark> the fireball <mark>increases</mark> , [2]	which feature
[graph segment] [description]	to describe
from 0 ms to 45 ms, rate of increase decreases with time	
from 45 ms to 60 ms, rate of increase is constant	
(ii) suggest why, in a room of <mark>length 12 m, width 5 m and height 3 m</mark> , such an	use relevant
explosion would be very hazardous. [3]	info
time taken for fireball to engulf whole room	
is maximum 23 ms judging by the longest dimension of 12 m;	
leaves very little reaction time to escape the room	

(b) It is thought that, for a fixed volume of butane, the radius R of the fireball varies with time t according to the expression

$$R^n = kt^m$$

where *n* and *m* are integers and *k* is a constant. Some corresponding values of $\lg t$ and $\lg R$ for the data in Fig. 3.1 are plotted on Fig. 3.2.

use relevant

info

(iii) Hence suggest values for the integers *n* and *m*. Explain your working. [3]

$$R^{m} = kt^{m}$$

$$n \lg(R) = \lg(k) + m \lg(t)$$

$$\lg(R) = \frac{\lg(k)}{n} + \left(\frac{m}{n}\right) \lg(t)$$
since $\left(\frac{m}{n}\right) = 0.400$, *m* can be 2, *n* can be 5

(c) The experiment is repeated using similar containers but with different volumes of butane. The results are shown in Fig. 3.3.

Fig. 3.3

Without drawing a further graph, show that, at time t = 40 ms, the radius *R* of the fireball is related to the volume *V* of butane by the expression

 $R^5 = cV$

[<mark>3</mark>]

where <i>c</i> is a constant.								
calc	calculating <i>c</i> for at least <mark>3 sets</mark> of data							
	<i>R</i> / m	V / 10 ⁻³ m ³	c / 10 ³ m ²					
	14.8	12.5	56800					
	14.2	10.0	57700					
	13.4	7.5	57600					
	12.4	5.0	58600					
	10.8	2.5	58800					
		avera	ge	× 10 ³ m ²				
	max – min $58800-56800$ 100% 2.5%							
$\frac{100\%}{\text{smallest value}} \times 100\% = \frac{100\%}{56800} \times 100\% = 3.5\%$								
	largest percentage deviation in the values is less than 5%							
	c is likely constant so expression likely valid							

lab skills

(verifying

constants)

Lecture Example 4: A Lorry's Tachograph

Statistics for road traffic accidents are sometimes interpreted as showing that many occur as a result of speeding or fatigue of the driver. As a result, some countries have introduced laws to limit the speed at which vehicles may travel and also the length of time a person may drive without a rest. In order to enforce these laws, some types of vehicles are fitted with tachographs. A tachograph records, on a circular chart, amongst other information, the **times** at which the vehicle is being drive, together with its speed. One such chart from a lorry tachograph is shown.

Skills Extract info

					9749(2023) H2 Physics Data-based Questions
The con exa	time of day centric circle mple, at time	 v, using the 24-hour represents a speed r 1215H, the lorry was 	clock , is shown on the <mark>i</mark> r neasured in kilometres per l s travelling at 40 km h ⁻¹ .	n <mark>ner_scale</mark> . Each hour (km h ⁻¹). For	Extract info
(a)	Use the Fig. (i) the spee	Extract info			
	(ii) the leng 1200 nc	on. 1.25 hour (fr	the lorry was stationary bet om 0900H – 1015H)	ween 0800H and [1]	Extract info
(b)	Suggest what (i) some de betwee	at evidence is provide evice on the lorry whi en 1030H and 1200H	ed between 0800H and 1300 ch limits its maximum speed , speed does not exceed 80	DH for d, [1]) km h ⁻¹	Extract info
	(ii) the lorry 1300H. between 12 speed fluctu	v being in a congeste 45H and 1300H, the lates up and down, si	d area with heavy traffic bet average speed is low at abo uggesting frequent stopping	ween 1245H and [2] out 20 km h ⁻¹ and starting	Extract info, deduce logically
(c)	The table be	elow shows data for a	particular journey.		
		time of day	activity		
		1600H – 1800H	resting		
		1800H	accelerates to 40 km h ⁻¹		
		1800H – 1830H	continues at 40 km h ⁻¹		
		1830H	accelerates to 65 km h ⁻¹		
		1830H – 1910H 1910H	stops		
(d)	Draw on the The tachogra (i) State ho	tachograph the trace aph is one form of sp ow the following info	which would be produced t eed-time graph. rmation may be obtained fr	for this journey. om a speed-time	
	graph.				use existing
	1. acce	gradient of tang	ent at that point in time	[1]	(kinematics)
	2. dista a	nce travelled area under graph, in-l	petween desired time interva	[1] al	
esti esti	(ii) Use the 1200H a mate speed a mate speed a	tachograph to estima and 1300H. as 45 km h ⁻¹ between as 20 km h ⁻¹ between	ate the distance travelled by 1200H and 1245H 1245H and 1300H, total 35	the lorry between [4] km	

Ending Notes

First, is that DBQs tests more of our **skills** at handling data, weighing costs-vs-benefits in analysis and our aptitude in applying the scientific method. To do so effectively, we should all develop relevant attitudes such as a concern for accuracy and precision, being objective and having academic integrity. These are transferable skills too, skills that will be valued for future studies and employment.

Second, is that we should learn to be **comfortable with unfamiliarity and uncertainty**. The nature of DBQs means that we will never be able to predict the scenario and/or the topics of Physics that that the examiners will deploy in their questions. Counter-intuitively, such methods of working through problems and forcing ourselves to reason through our thinking, actually enables us to learn more effectively, even if it seems more incoherent, more intermittent, more frustrating or more confusing (https://doi.org/10.1073/pnas.1821936116).

Third, is that DBQs **favours the curious**. Many of the DRQs responses require logical deductions. They are natural exercises of "*how to...*", "*what might result if...*", "*why is it like that...*". It confers natural advantages to those of us who take an active interest in knowing more about the world, from the simple act of reading the product labels on our shampoos, to never backing down from a good intellectual discourse. If we were literature teachers, we'd probably advise you to stop every once in a while to smell the flowers.

"I have no special talents, I am only passionately curious."

ALBERT EINSTEIN