

ST ANDREW'S JUNIOR COLLEGE

JC2 PRELIMINARY EXAMINATIONS

HIGHER 2

CANDIDATE NAME	STUDI	ENT WO	ORKED	SOLUT	IONS	 				
CLASS	2	1	S							

CHEMISTRY

Paper 1 Multiple Choice

15 September 2022

9729/01

1 hour

Additional Materials: Multiple Choice Answer Sheet

Data Booklet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name and class on the Answer Sheet in the spaces provided.

There are **thirty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

The use of an approved scientific calculator is expected, where appropriate.

This document consists of **19** printed pages (including this cover page) and **1** blank page.

1	2	3	4	5	6	7	8	9	10
С	D	С	A	В	A	A	С	В	С
11	12	13	14	15	16	17	18	19	20
С	В	D	С	С	D	D	A	D	С
21	22	23	24	25	26	27	28	29	30
С	В	D	В	А	В	В	С	В	D

1	Use of the Data Booklet is relevant to this question.						
	Which statements about chromium and its compounds are correct?						
	1	The valence electronic configuration of Cr contains both an unpaired s electron and an					
		unpaired p electron.					
	2	One of the 3d orbitals in chromium atom has only 2 lobes.					
	3	There are 58 electrons and 60 neutrons in the ${}^{52}Cr^{16}O_4{}^{2-}$ ion.					
	Α	1, 2, and 3					
	В	1 and 2					
	C	2 and 3					
	D	1 only					
		1. The electronic configuration of Cr is [Ar]3d ⁵ 4s ¹ . Cr contains both an unpaired s electron					
		and an unpaired d electron (not p electron).					
		2. Only the $3d_z^2 d$ orbital has 2 lobes.					
		3. No of electrons = $24 + (4 \times 8) + 2 = 58$					
		No of neutrons = $(52 - 24) + 4(16 - 8) = 60$					
	Ans	wer: C					

5	Which description of Dalton's law is correct?							
	Α	Equal volumes of gases at the same temperature and pressure contain equal numbers of						
		molecules.						
	B	The total pressure of a mixture of gases is equal to the sum of the partial pressures of						
		those gases.						
	С	The partial pressure of a gas in mixture is given by the product of its mole fraction and the						
		total pressure.						
	D	The partial pressure of a gas in a mixture is given by the product of its percent by mass						
		and the total pressure.						
	Ans	wer: B						
	Dal	ton's Law of Partial Pressure:						
	At o	constant temperature, for gases which do not react chemically, the total pressure of a						
	mix	cture of gases in a given volume is equal to the sum of the partial pressures of the constituent						
	gas	es.						
		$p_{T} = p_{A} + p_{B} + p_{C} + \dots$						

7	Wh	ich property describes the trend for the hydrogen halides as stated below?				
		HCI > HBr > HI				
	A	thermal stability				
	В	boiling point				
	С	ease of oxidation				
	D	acidity				
	Opt	ion A is correct as down the group, the bond length of H-X increases, bond strength				
	dec	reases and bond energy decreases. Hence thermal stability decreases down the group.				
	Opt	ion B is wrong as down the group, the size of electron cloud of H-X compound increases,				
	it is	more easily polarised, hence the strength of instantaneous dipole-induced dipole (id-id)				
	inte	ractions between molecules increases, more energy is needed to overcome the id-id				
	inte	ractions, resulting in higher boiling point.				
	Opt	tion C is wrong as the ease of oxidation of the compounds, X^- increase down the group.				
	Dov	where the group, $E^{\bullet}(X_2/X^-)$ becomes less positive, X ⁻ is more readily oxidized to X ₂ . Reducing				
	pov	ver of X ⁻ increases down the group.				
	Option D is wrong as acid strength increases down the group, i.e. HC/< HBr < HL Down the					
	gro	up, size of halogen atom increases, -X bond length increases, H-X bond strength				
	dec	reases less energy required to break H-X bond. H-X dissociates to give H ⁺ more easily.				
	Ans	swer A				
8	Use	e of the Data Booklet is relevant to this question.				
	Wh	ich contains the largest number of molecules?				
	Α	810 cm ³ of sulfur dioxide gas (measured at r.t.p.)				
	В	1.56 g of methyl methanoate				
	C	5.25 cm ³ of ethanol where the density of ethanol is 0.755 g cm ⁻³				
	D	1./U x 10 molecules of hydrogen peroxide.				
	Am	ount of $SO_2 = 810 / 24000 = 0.03375$ mol				
	Am	ount of methyl methanoate = $1.56 / 60 = 0.0260$ mol				
	Ma	ss of ethanol = $5.25 \times 0.755 = 3.964 \text{ g}$				
	Am	ount of ethanol = $3.964 / 46 = 0.0862$ mol				

Α	0.304 mol			C	<mark>0.412 mol</mark>		
В	0.112 mol			D	0.346 mol		
Мо	I	CH ₄	$H_2O =$		СО	3H ₂	
Init	ial	0.60	x		0	0	
Ch	ange	-у	-у		+y	+3y	
Eq	m	0.60 – y x - y			у	Зу	
		=0.30	x-0.30		0.30	0.90	
3y =	: 0.90	1					
y = 0	0.30						
K _c =	$\frac{(0.30)(0.90)^3}{(0.30)(x-0.30)}$	= 6.5					
0.03	336 = 0.3x - 0	0.09					
0.12	236 = 0.3x						
x =	0.412						
Answer: C							
_							

	Opt	ion D: O-D is stronger than O-H bond since the ionisation of D_2O is weaker than H_2O .					
	000						
	Ans	Answer: B					
13	The	numerical values of the solubility product of calcium bydroxide and calcium carbonate are					
10	6.5	$x 10^{-6}$ and 8.0×10^{-7} respectively at 25 °C					
	0.5	x to and 6.0 x to respectively at 25 °C.					
	Wh	ich statements are correct?					
	1	A precipitate is formed when equal volumes of 0.001 mol dm ⁻³ calcium nitrate and a					
		solution of pH 12.5 are mixed.					
	2	The solubility of calcium hydroxide in a solution of pH 12.5 is higher than the solubility of					
		calcium carbonate in water.					
	3	The solubility product of calcium carbonate and calcium hydroxide decrease in a solution					
	-	containing calcium nitrate					
	Δ	1.2 and 3					
		1, 2, and 3					
	D C						
	U						
	[OF	f']=0.0316 mol dm ⁻³					
	IP =	= (0.0316 / 2) ² x (0.001/2) = <mark>1.25 x 10^{-/} mol³dm⁻⁹</mark>					
	Sin	ce IP < Ksp, ppt is not formed.					
	Op	tion 1 is incorrect.					
	Ca	CO_3 (s) \rightleftharpoons $Ca^{2+}(aq) + CO_3^{2-}(aq)$					
	S	S S					
	K _{sp}	= [Ca ²⁺][CO ₃ ²⁻]					
	8.0	$x 10^{-7} = (s)(s)$					
	s =	8.94×10^{-4} mol dm ⁻³					
	Cal	$(OH)_2(s) \rightleftharpoons Ca^{2+}(aq) + 2OH^{-}(aq)$					
	K	- [Ca ²⁺][OH ⁻] ²					
	6 F	= [00] [00]					
	0.0	10 - (3)(23)					
	s =						
	The	e solubility of calcium hydroxide in $pH = 12.5$ is calculated as follows.					
	[OF	+]=0.0316 mol dm ⁻³					

15	Ros	marinic acid can be found in herbs such as rosemary, sage and thyme. It has the
	follo	wing structure.
		ОН
		O OH OH
		НО
		он Он
	Whi	ch functional groups will remain in the product after rosmarinic acid reacts with excess
	hydi	ogen gas in the presence of platinum?
	1	Alkene
	2	Carboxylic acid
	3	Ester
	4	Phenol
	Α	1 and 2
	В	3 and 4
	С	2, 3 and 4
	D	4 only
	Of t	ne 4 functional groups present, hydrogen gas in the presence of a platinum catalyst will
	only	react with alkene, which will not be present in the product. The other 3 will remain.
	Ans	C C
16	Met	hylbenzene can undergo the following reaction.
		CH3 CH3
		SO ₂ C <i>l</i>
		C/SO_3H + H ₂ O
	Whi	ch statement about the mechanism of this reaction is correct?

	Α	The hybridisation states of the carbon atoms in benzene do not change during the						
		reaction.						
	В	The π electron cloud of benzene will attack the O atom in C/SO ₃ H.						
	С	C The mechanism of this reaction is electrophilic addition.						
	D	The bond broken in C/SO ₃ H is the S-O bond.						
	This	type of reaction undergone is electrophilic substitution as the π electrons in benzene is						
	rest	ored. Hence Option C is wrong.						
	As s	een in the reaction, the bond formed between the benzene ring and C/SO_3H is S. Hence						
	the	π electron attacks the S atom in C/SO ₃ H and not the O atom. Hence, option B is wrong.						
	The	intermediate formed during this reaction involves one of the carbon having 4 bonds.						
	Hen	ce, the hybridisation of this carbon changed from sp^2 to sp^3 and back to sp^2 when the π						
	elec	trons in benzene are restored. Hence Option A is wrong.						
	CIS	D_3H will lose the OH as seen from the product formed. Hence the bond broken has to						
	invo	lve S and O. Option D is correct.						
	Ans	D						
17	1-br	omo-2,2-dimethylpropane, (CH ₃) ₃ CCH ₂ Br, can be obtained from 2,2-dimethylpropane,						
	(CH	₃) ₄ C, via free radical substitution with excess bromine. The yield however is low.						
	vvna A	Different mone substituted products are formed						
	A	The Pr Pr band requires a lot of energy to break						
		The bromine radical is regenerated during the formation of (CH ₂) ₂ CCH ₂ Br						
		he H in 2.2-dimethylpropane are equivalent. Hence there is only 1 mono-brominated						
	proc	luct formed and no other isomers, making statement A wrong.						
	Sinc	e the reaction is carried out with excess bromine and bromine radical is regenerated						
	durii	ng the mechanism, this will result in a lot of bromine radicals, leading to a mixture of						
	proc	lucts being formed.						
	Ans	D						
18	Mole	ecule ${f M}$ is a halogenoalkane. It is reacted with various reagents to give the following						
	resu	lts.						
	•	• M is first heated with NaOH(aq). After it has cooled, HNO ₃ is added followed by						
		AgNO ₃ . A precipitate appears and is only soluble in concentrated NH_3 .						

	•	• M reacts with ethanolic KCN when heated. The product reacted with LiA/H_4 in dry					
		ether to yield a product that has the molecular formula $C_5H_{13}N$.					
	Which conclusion can be drawn from these results?						
	A	There are 4 possible constitutional isomers for molecule M .					
	В	When treated with ethanolic AgNO $_3$, the precipitate for molecule ${f M}$ will appear slower					
		than 1-chlorobutane.					
	С	Molecule M contains 5 carbon atoms.					
	D	Molecule M is a tertiary halogenoalkane.					
	Fron	n the first reaction, molecule ${f M}$ is a bromoalkane. Hence, when reacted with ethanolic					
	AgN	O_3 , its ppt will appear faster than 1-chlorbutane. Hence option B is wrong.					
	Fron	n the second reaction, it's a carbon extension reaction. Since the product after extension					
	has	5 carbon atoms, molecule \mathbf{M} can only contain 4 carbon atoms. Hence option C is wrong.					
	Mole	ecule M would have a molecular formula of C_4H_9X (where X = halogen). It can be a					
	prim	ary, secondary or tertiary halogenoalkane and there is not enough information about					
	mole	ecule M to conclude. Option D is wrong.					
	The	possible isomers for molecule M are					
	CH ₂	$XCH_2CH_2CH_3$, $CH_3CH(X)CH_2CH_3$, $CH_2XCH(CH_3)CH_3$ and $(CH_3)_3CX$					
	Ans:	A					
19	Whie	ch statement about S_N1 nucleophilic substitution mechanism is correct?					
	Α	The rate of the reaction is dependent on the concentration of the nucleophile.					
	В	If the product formed is chiral, it will be able to rotate the plane of polarised light.					
	С	Transition states are formed but not intermediates.					
	D	This usually takes place for tertiary halogenoalkanes.					
	S_N1 nucleophilic substitution reactions takes places in 2 steps. The first step is the rate						
	dete	rmining step which involved the halogen leaving to produce a carbocation intermediate.					
	Thus, the rate equation for such reaction is only k[RX] as the nucleophile is only involved in						
	the 2 nd step which is fast. Rate of such reactions is thus independent of the nucleophile. Hence						
	state	ement A and C is wrong.					
	The	intermediate formed from the first step is planar. This allows the nucleophile to attack					
	from	both the top and the bottom of the plane in equal proportion, giving rise to a racemic					
	mixt	ure. Hence, even if the product is chiral, it would not rotate the plane of polarised light.					
	State	ement B is thus wrong.					

As mentioned earlier, the first step involved the halogen leaving first to make space for the
nucleophile to attack. This would mean that this reaction favors tertiary halogenoalkanes as
there are many bulky groups around the halogen, blocking the attack of the nucleophile.
Ans: D

20	Con	pound E has the following structure.
		OH
	Whi	ch statements are correct about the organic product formed after compound E has
	read	ted with hot acidified KMnO₄?
	1	It contains 6 carbon atoms.
	2	It can react with 3 moles of PCl_5 .
	3	It gives a yellow ppt with alkaline aqueous iodine.
	4	It can react with 2 moles of aqueous NaOH.
	Α	1 and 2
	B	1 and 3
	C	2 and 4
	D	3 and 4
	Atte	r compound E undergoes a reaction with not acidified KiVinO ₄ , the 2 C=C are broken. This result in
	The the The	 In the second second
	Ans	 does not give a positive test with iodoform due to the lack of methyl alcohol and methyl ketone (statement 3 is incorrect) reacts with 2 moles of NaOH(aq) due to 2 COOH groups (statement 4 is correct)
	7115	. •

22	Compound L has the following structure.		
	O II		
	Whic	ch statement about compound L is incorrect ?	
	Α	It can undergo a condensation reaction.	
	B	It can undergo a hydrolysis reaction	
	С	It can undergo reduction reaction.	
	D	It can be attacked by a nucleophile.	
	The	ketone group present in the molecule can undergo a condensation reaction with	
	2,4-[DNPH and hence Option A is true.	
	The ketone group can also undergo a reduction reaction to form a secondary alcohol and		
	hend	ce Option C is true	
	The	C of ketone can also be attacked a nucleophile due to it being electron deficient as it is	
	attached to an electronegative O. Hence, Option D is also true.		
	Ketones cannot undergo hydrolysis.		
	Ans: B		

23	Man	delic acid and 4-hydroxypher	nylacetic acid are isomers. They have the following			
	structures.					
		но он	HO			
		Mandelic acid 4-hydroxyphenylacetic acid				
Given that the p K_a value of the carboxylic acid in mandelic acid is 3.75, which option 4-hydroxyphenylacetic acid is correct?			boxylic acid in mandelic acid is 3.75, which option abou			
		pK_a of the carboxylic acid in	Reason			
		4-hydroxyphenylacetic acid				
	Α	3.25	Lone pair of electrons on O of the phenol in			
			4-hydroxyphenylacetic acid can delocalise into the			
			benzene ring			
	В	3.25	The alcohol group of mandelic acid is an electron			
			withdrawing group			
	С	4.05	Lone pair of electrons on O of the phenol in			
			4-hydroxyphenylacetic acid can delocalise into the			
			benzene ring			
	D	<mark>4.05</mark>	The alcohol group of mandelic acid is an electron			
			withdrawing group			
	The alcohol OH group in mandelic acid is nearer the carboxylic acid group. Hence, due electronegativity of O, it is an electron withdrawing group and hence able to better st the carboxylate ion of the conjugate base of mandelic acid, making mandelic acid a st acid than 4-hydroxyphenylacetic acid. Hence, 4-hydroxyphenylacetic acid is less acidi mandelic acid, resulting in it having a lower Ka but higher pKa value when compa mandelic acid.					

24	Compounds X and Y have the following structures.		
		$ \begin{array}{c} & & & \\ & & \\ \hline \\ & & \\ \hline \\ \\ & \\ \hline \\ \\ \hline \\ & \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline $	
	Whie	ch reagents can be used to distinguish them?	
	1	Br ₂ (aq)	
	2	Fehling's solution and warm	
	3	Tollens' reagent and warm	
	A	1 only	
	B	1 and 2	
		2 and 3	
	\mathbf{V} [1, 2 and 3] Bro (ad) can be used as Compound \mathbf{X} has the C-C but Compound \mathbf{V} does not have any		
	functional group that will reaction with Br_2 (ag). Option 1 is possible.		
	Fehling's solution can also be used as Compound X has an aliphatic aldehyde but Compound		
	Y has a benzaldehyde which does not reaction with Fehling's solution. Option 2 is possible		
	Tollens' reagent will react with the aldehyde groups in both the compounds and hence it		
	cannot be used. Option 3 is not possible.		
	Ans:	В	

	Ans	: A		
26	Which option correctly shows the product and observation of the resultant solution when aqueous propanoic acid is added dropwise to aqueous propylamine until the reaction is			
	complete?			
		Product formed	Observations	
	A	CH ₃ CH ₂ CONHCH ₂ CH ₂ CH ₃	One homogenous solution	
	B	(CH ₃ CH ₂ CH ₂ NH ₃) ⁺ (CH ₃ CH ₂ COO)	One homogenous solution	
	С	CH ₃ CH ₂ CONHCH ₂ CH ₂ CH ₃	Two distinct layers	
	D	$(CH_3CH_2CH_2NH_3)^+(CH_3CH_2COO)^-$	Two distinct layers	
27	in a Sinc inter Ans: Aspa	reaction between propanoic acid and propylamine is an acid-base reaction that will result salt form and not an amide. Hence Option A and C are wrong. De a salt is form, the salt will readily dissolve in water as it is able to form ion-dipole raction with water, allowing it to dissolve readily to give a homogenous solution. The B martic acid is used in the biosynthesis of proteins and has the following structure. $\begin{array}{c} O \\ HO \\ HO \\ HO \\ HO \\ HH_2 \end{array}$		
	Aspartic acid has pK_a values of 2.0, 3.7 and 9.7.			
	At w	At what pH will the major species in the solution be the zwitterion of aspartic acid?		
	Α	1.5		
	B	<mark>3.4</mark>		
	С	7.0		
	D	10.3		
	The	The pK _a values assigned to aspartic acid are as follows.		

	•	The α carboxylic group is 2.0 as it's the most acidic due to it being nearer the N of the		
	α amino group which is electronegative and helps to stabilise the conjugate base ion			
		more than the side chain carboxylic group.		
	•	The side chain carboxylic group is hence assigned the pKa of 3.7		
	•	The α amino group is thus assigned the pK _a of 9.7		
	The	zwitterion of aspartic acid is when one of the carboxylic groups and the $\boldsymbol{\alpha}$ amino group		
	are protonated to produce a species that is electrically neutral. This would mean the α			
	carboxylic group would be in the basic form and pH has to be above its pK_a which is 2.1			
	This also means the α amino group would be in the acidic form and pH has to be below its			
	pK_a which is 9.7. This would mean Options A and D are incorrect.			
	As for option C, at pH 7.0, the side chain carboxylic group will be protonated (i.e. COO) as			
	the p	bH is above its pK_a which is 3.7. This would not result in the formation of the zwitterion.		
	Ans:	B		
28	A pe	entapeptide has the following structure.		
		H ₂ N OH		
		γ NH 0 0		
	Whie	ch statement about this pentapeptide is incorrect ?		
	Α	When this pentapeptide reacts with aqueous H_2SO_4 the product will have an overall		
		charge of 1+		
	B	This pentapentide contains 4 pentide bonds		
		This pentapeptide is made up of 4 different types of gramine acids		
		This periapeptide is made up of 4 different types of d-anino acids. M of this pertapeptide = (Sum of M of all the α amine acids residues) = 72		
	D <i>M</i> _r or this pentapeptide = (Sum of M _r of all the α-amino acids residues) – 72			
		t and bases correct on sucrall charge of $(1, Option 1)$ is correct		
	NH ₃ ⁺ and hence carry an overall charge of +1. Option 1 is correct.			
	Sinc	e this is a pentapeptide, it is made up of 5 α -amino acid residues and the number of		
	pept	ide bonds it will form is 4 (5 – 1). The bond in the side chain of the $3^{10} \alpha$ -amino acid is a		
	amic	de bond and not a peptide bond as it was not formed by α -amino acids. Option 2 is correct.		
	Polypeptides are made of up α -amino acids, which all have the general formula,			
1	$H_2NCH(R)COOH$. They only differ by the R. For this pentapeptide, the R groups are (from left			
	1 121 1			
	to riç	ght) -CH ₃ , -H, -CH ₂ CH ₂ CONH ₂ , -CH ₃ and -H. Since the -CH ₃ and -H groups are repeated,		

Polypeptides are formed from various α -amino acid residues, When the α -amino acids react to form the peptide bonds, water is lost. Since there are 4 peptide bonds formed in this pentapeptide, 4 water molecules are lost. The Mr of this pentapeptide is hence the sum of the Mr of all the α-amino acid residues minus away 4 water molecules which has a collective Mr of 72. Hence Option D is correct. Ans: C 29 Use of the Data Booklet is relevant to this question. Given the following information on the colours of the aqueous vanadium-containing ions, what is likely to be the colour change when excess nickel is added to a solution containing VO²⁺? Aqueous vanadium-Colour containing ions VO_2^+ Yellow VO²⁺ Blue V³⁺ Green V²⁺ Purple Α Blue to yellow B Blue to green С Blue to purple D Yellow to green Ni²⁺ + 2e — Ni $E^{0} = -0.25 \text{ V}$ VO_2^+ + 2H⁺ + e = H₂O + VO²⁺ $E^{0} = +1.00 \text{ V}$ yellow blue VO^{2+} + 2H⁺ + e = H₂O + V³⁺ $E^{\theta} = +0.34 \text{ V}$ blue green V³⁺ + e - V²⁺ $E^{0} = -0.26 \text{ V}$ green purple

В	The overall charge of the complex ion is 4–.
С	The co-ordination number of the complex ion is 3.
D	The geometry of the complex ion is octahedral about Fe ²⁺ .
Opt	ion A: Since the colour of the complex is red, the complex ion reflects red light and not
absorb it.	
Option B – D:	
Fe ²⁺ : <i>ortho</i> -phenanthroline	
$= 1 \times 10^{-5} : 3 \times 10^{-5}$	
= 1 : 3	
Since ortho-phenanthroline is a bidentate ligand, there are 6 dative bonds formed	
(coordination number = 6) around Fe^{2+} , resulting in an octahedral geometry. The overall	
cha	rge of the complex is +2 i.e. [Fe(<i>ortho</i> -phenanthroline) ₃] ²⁺
Ansv	ver: D

END OF PAPER