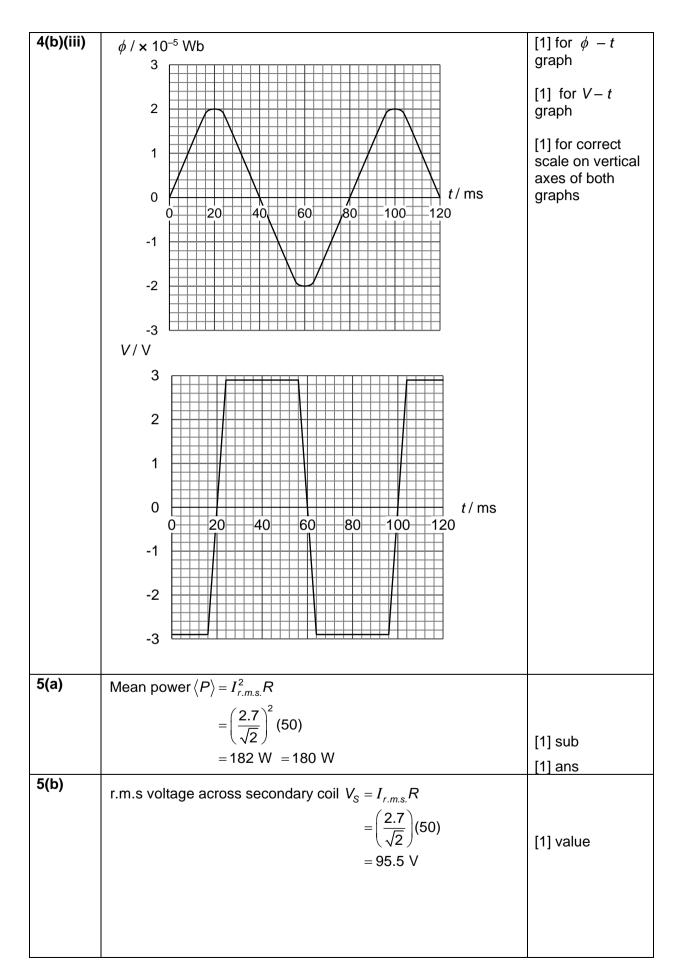
Answers to 2024 JC2 H2 Preliminary Examinations Paper 3


Suggested Solutions:

No.	Solution	Remarks
1(a)	v = u + at = -2.5 + (9.81)(2.0)	[1] substitution
	= 17.1 Speed is 17 m s ⁻¹	[1] answer
1(b)	v/ms ⁻¹ 17	[1] helicopter: horizontal straight line (-ve value)
		[1] parcel: diagonal straight line (+ve gradient)
	-2.5 1.0 2.0 t/s H	(reverse sign accepted)
		[-1] if not labelled
1(c)	Distance between helicopter and parcel = area of right-angled triangle	[1] working
	= $\frac{1}{2}(2.0)(17.1+2.5) = 19.6$ m OR From point of release, For helicopter, upwards $s = ut = (2.5)(2.0) = 5.0$ m	[1] answer
	For parcel, downward $s = ut + \frac{1}{2}at^2$	
	$= (-2.5)(2.0) + \frac{1}{2}(9.81)(2.0)^2$	
	= 14.6 m Hence their separation = $5.0 + 14.6 = 19.6 \text{ m}$	
2(a)	The <u>change in height is negligible compared with radius</u> of the planet.	[1]
	Thus, the field strength $g = \frac{GM}{R^2}$ remains relatively constant for	
	any small change in <i>R</i> . The gravitational field lines are effectively parallel.	
2(b)(i)	$Y = \frac{GM}{R^2}$ where G is the gravitational constant	[1]

2(b)(ii)		[1] for correct
//		shape of curve
		from -3R to
		-R; ending at
	Q.5Y-	(<i>–R</i> , 1.0Y)
		[1] for correct
		shape of curve
		from R to $3R$;
		starting at
		(<i>R</i> , –1.0Y)
	-0.57	[1] for curves
		[1] for curves passing through
		(–3 <i>R</i> , 0.11Y);
	-1.0Y	(–2 <i>R</i> , 0.25Y);
		(2 <i>R</i> , –0.25Y);
		(3 <i>R</i> , –0.11Y)
		(don't need to
		mark for ±3R)
2(b)(iii)	Initial total energy = Final total energy	[1] for correct
	$\frac{1}{2}mv^2 - \frac{GMm}{R} = \frac{1}{2}\left(\frac{1}{2}mv^2\right) - \frac{GMm}{x}$	[1] for correct equation for
	Z = R = Z(Z) = X	conservation of
	1 (1 1)	energy
	$\frac{1}{4}v^2 = GM\left(\frac{1}{R} - \frac{1}{x}\right)$	
		[1] for correct
	$\frac{1}{4} \left(4.7 \times 10^3 \right)^2 = \left(6.67 \times 10^{-11} \right) \left(6.4 \times 10^{23} \right) \left(\frac{1}{3.4 \times 10^6} - \frac{1}{x} \right)$	substitution
	$x = 6.070 \times 10^6$ m	
	Therefore distance travelled	
	= x - R	
	$= 6.070 \times 10^{6} - 3.4 \times 10^{6}$	
	$= 2.670 \times 10^{6}$ m	
	$= 2.7 \times 10^{6}$ m	[1] for correct
		answer
3(2)	The electric field strength in both sphere A (between $x = 0$ and	[1]
3(a)	x = 1.4 cm) and sphere B is zero (between $x = 11.4$ and	[1]
	<i>x</i> = 12.0 cm).	
3(b)(i)	The resultant field strength is zero at a point between the	
	<u>spheres</u> and this shows that <u>electric fields are in opposite</u> directions in the region between the two spheres.	[1] expl
	This shows that the polarity of the two charges are the same. Hence, since sphere A is positively charged, <u>sphere B must also</u>	[1] state
	be positively charged.	[1] 0.0.0

3(b)(ii)	At $x = 0.08$ m, the electric field strength due to sphere A cancels out the electric field strength due to sphere B.	
	$E_{\rm A} = E_{\rm B}$	
		[1] sub
	$\frac{Q_{\rm A}}{4\pi\varepsilon_{\rm o} (0.08)^2} = \frac{Q_{\rm B}}{4\pi\varepsilon_{\rm o} (0.04)^2}$	[1] 300
	$(0.00)^2$	
	$\frac{Q_A}{Q_B} = \left(\frac{0.08}{0.04}\right)^2 = 4$	[1] ans
3(c)(i)	The electric field strength is negative of the electric potential	[1]
	<u>gradient</u> , i.e. $E = -\frac{dV}{dx}$	don't accept
	UX.	$E = -\frac{dV}{dx}$
3(c)(ii)		
	100	
	50	
	-50	
	-100	
	-150	
	-200	
	dV $f^{x=8cm} = d$	
	From $E = -\frac{dV}{dx} \Rightarrow \Delta V = -\int_{x=2cm}^{x=8cm} E dx$	
	Hence, change in potential,	
	ΔV = negative of area under <i>E</i> - <i>x</i> graph (from <i>x</i> = 2.0 cm to <i>x</i> = 8.0 cm)	[1] ΔV = area under <i>E</i> - <i>x</i> graph
	By approximation, area of triangle \approx area under <i>E</i> - <i>x</i> graph (from <i>x</i> = 2.0 cm to <i>x</i> = 8.0 cm)	[1] value of ΔV

	$\Delta V = -\frac{1}{2} \left(2.6 \times 10^{-2} \right) \left(60 \times 10^{6} \right) = -7.8 \times 10^{5} \text{ V}$	[1] ans accept 1.4 J to
	Work done = $(-7.8 \times 10^5)(-2.0 \times 10^{-6}) = 1.6 \text{ J}$	1.8 J
4(a)	The magnetic flux linkage is the product of the number of turns of the coil of wire and the magnetic flux through (each turn of) the coil of wire.	[1]
	The magnetic flux through an area is defined as the product of that area and the component of the magnetic flux density normal to the plane of that area.	[1]
4(b)(i)	$\phi_{\max} = B_{\max} A$	[1] substitution
	$=(\mu n I_{\max}) A$	for <i>B</i> _{max} only
	$= (1000 \times 4\pi \times 10^{-7}) \left(\frac{1800}{0.12}\right) (1.05 \times 10^{-3}) \left(\frac{\pi \times 0.036^2}{4}\right)$	[1] unrounded value for max flux
	$= 2.014 \times 10^{-5}$ Wb	-
	$= 2.0 \times 10^{-5}$ Wb	
4(b)(ii)	By Faraday's law of EMI,	[1] for correct substitution of µnA
	$E_{\text{induced}} = -\frac{d\Phi}{dt}$	
	$= -\frac{d(N_{Q}BA)}{dt}$ $= -N_{Q}A\frac{d(1000\mu_{0}nI)}{dt}$	[1] correct gradient from Fig. 4.2
	$= -1000 N_{\rm Q} A \mu_0 n \frac{dI}{dt}$	
	$\frac{dI}{dt} = \frac{[1.0 - (-1.0)] \times 10^{-3}}{(24 - 56) \times 10^{-3}}$	
	$E_{\text{induced}} = -(1000)(2400) \left(\frac{\pi (0.036)^2}{4}\right) (4\pi \times 10^{-7}) \left(\frac{1800}{0.12}\right) \frac{dI}{dt}$	[1] for correct substitution of N_{q}
	= 2.88 V	[1] for final answer

	N V	
	Turns ratio, $\frac{N_P}{N_S} = \frac{V_P}{V_S}$ $\frac{25}{N_S} = \frac{20}{95.46}$	[1] ans
	$N_{\rm S} = \frac{(25)(95.5)}{20}$	
	= 119 = 120	
5(c)	For the current in the secondary coil,	
	Period $T = \frac{50 \times 10^{-3}}{3} = 1.67 \times 10^{-2}$	[1] correct T
	Frequency $f = \frac{1}{1.67 \times 10^{-2}}$ = 60 Hz	
	Hence, the frequency of the alternating voltage supply is 60 Hz since it is the same as the frequency of the current through the secondary coil.	[1] ans and statement
5(d)	The values of the root-mean-square current and voltage of the alternating voltage supply are independent of its frequency.	[1]
	The mean power due to the alternating voltage supply is constant. Since the transformer is ideal, the mean power dissipated across R remains unchanged.	[1]
6(a)	Threshold frequency refers to the <u>minimum frequency</u> of the illuminating electromagnetic radiation that will cause a photoelectron to be ejected for a particular metal.	[1]
6(b)(i)	Energy of a photon,	
	$E = \frac{hc}{\lambda} = \frac{\left(6.63 \times 10^{-34}\right) \left(3.00 \times 10^{8}\right)}{450 \times 10^{-9}} = 4.42 \times 10^{-19} \text{ J}$	[1] sub
	$E = \frac{1}{\lambda} = \frac{1}{450 \times 10^{-9}} = 4.42 \times 10^{-19} \text{ J}$	[1] ans
6(b)(ii)	Power incident on metal,	
	$P = (2.7 \times 10^3)(3.0 \times 10^{-4}) = 0.81 \text{ W}$	[1] value
	$P = \left(\frac{N}{t}\right)E$	
	$\Rightarrow \frac{N}{t} = \frac{P}{E} = \frac{0.81}{4.42 \times 10^{-19}} = 1.83 \times 10^{18} \text{ s}^{-1}$	[1] ans
6(b)(iii)	Max. K.E. = $eV_s = (1.6 \times 10^{-19})(1.6) = 2.56 \times 10^{-19} \text{ J}$	[1] value
	Applying Einstein Photoelectric equation,	
	Work function, $\phi = hf - \max. \text{ K.E.} = 4.42 \times 10^{-19} - 2.56 \times 10^{-19} = 1.86 \times 10^{-19} \text{ J}$	[1] value
		1

		,
	Threshold wavelength, $\lambda = \frac{hc}{\phi} = \frac{\left(6.63 \times 10^{-34}\right) \left(3.00 \times 10^{8}\right)}{1.86 \times 10^{-19}} = 1.07 \times 10^{-6} \text{ m}$	[1] ans
6(c)(i)	From the graph, λ_{\min} is the same for both spectra.	[1]
	$eV = \frac{hc}{\lambda_{\min}} \Rightarrow V = \frac{hc}{e\lambda_{\min}}$	
6(c)(ii)	From the graph, $\lambda_{\rm min} = 16 \times 10^{-12} {\rm m}$	
	$V = \frac{hc}{e\lambda_{\min}} = \frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{1.60 \times 10^{-19} \times 16 \times 10^{-12}} = 7.8 \times 10^4 \text{ V}$	[1] sub [1] ans
7(a)(i)	The half-life of a radioactive nuclide is the time taken for the activity of a sample to reduce to half its initial value.	[1] answer
7(a)(ii)	The decay constant is the <u>fraction of the total number of nuclei</u> in a sample that decay per unit time.	[1] answer
7(b)(i)	$E = \Delta m c^2 = 0.7060 \text{ MeV} = (0.7060)(1.6 \times 10^{-13})$ = 1.1296 × 10 ⁻¹³ J	
	→ $\Delta m = \frac{E}{c^2} = \frac{1.1296 \times 10^{-13}}{(3 \times 10^8)^2} = 1.2551 \times 10^{-30} \text{ kg}$	[1] <i>∆m</i> in kg
	$=\frac{1.2551\times10^{-30}}{1.66\times10^{-27}}=7.5609\times10^{-4} u$	[1] convert kg to <i>u</i>
	$M_{\rm N} + M_{\rm n} - (M_{\rm C} + M_{\rm X}) = 7.5609 \times 10^{-4} u$ $\rightarrow M_{\rm X} = 1.00858 \ u - 7.5609 \times 10^{-4} \ u = 1.007825 \ u = 1.01 u$	[1] answer
7(b)(ii)1.	Number produced = $\frac{7500}{14}$ (6.02 × 10 ²³) = 3.2 × 10 ²⁶	[1] answer
7(b)(ii)2.	The probability of decay of the nucleus in a time of 1.0 year is the decay constant of the nucleus in that period of time. Decay constant, $\lambda = \frac{\ln 2}{t_{1/2}} = \frac{\ln 2}{5.7 \times 10^3} = 1.22 \times 10^{-4} \text{ year}^{-1}$	[1] answer
8(a)	Simple harmonic motion occurs when the <u>acceleration of the</u> <u>object is directly proportional to its displacement from its</u> <u>equilibrium position</u> and the <u>acceleration is towards the</u> <u>equilibrium position/opposite to its displacement.</u>	[1] [1]
8(b)(i)	$\omega = 2\pi f = 2\pi (33) = 66\pi$	[1] correct amplitude and ω
	$x = 2.1 \times 10^{-3} \sin\left[\left(66\pi\right)t\right]$	[1] any correct equation

8(b)(ii)	A distance of 0.8 mm to the right means the brush head is 1.3 mm from its equilibrium point.	[1] correct x
	$x = 2.1 \times 10^{-3} \sin[(66\pi)t]$	
	$1.3 \times 10^{-3} = 2.1 \times 10^{-3} \sin[(66\pi)t]$	
	$t = 3.2 \times 10^{-3} \text{ s}$	
	$V = (2.1 \times 10^{-3})(66\pi)\cos[(66\pi)t]$	[1] correct substitution
	$= (2.1 \times 10^{-3})(66\pi) \cos \left[(66\pi) (3.2 \times 10^{-3}) \right]$	[1] correct ans
0(-)	$= 0.34 \text{ m s}^{-1}$	[1] correct v_0
8(c)	$v = 9.2 \times 10^{-2} \cos 77t$	substitution
	$V_{\rm o} = \omega X_{\rm o} = 9.2 \times 10^{-2}$	[1] correct
	$(77) x_o = 9.2 \times 10^{-2}$ $x_o = 1.2 \times 10^{-3} \text{ m}$	[1] correct answer
	$x_o = 1.2 \times 10$ III	
8(d)(i)	$v = 9.2 \times 10^{-2} \cos 77t$	[1] correct K.E.
0(0)(1)	max K.E. = $\frac{1}{2}mv_o^2 = \frac{1}{2}(2.5 \times 10^{-6})(9.2 \times 10^{-2})^2 = 1.1 \times 10^{-8}$ J	substitution
		[1] correct
		answer
8(d)(ii)	kinetic energy / J	
	1.0×10 ⁻⁸	
	0.5×10 ⁻⁸	
	0	→
	-0.5×10^{-8}	time / s
	-1.0×10^{-8}	
		+++++
	 [1] for correct shape over 2 periods [1] for correct calculation of period T [1] for correct labelling of both axes 	
	$\omega = \frac{2\pi}{T} = 77$	
	T = 0.082 s	

(d)(iii)Frequency is $f = \frac{77}{2\pi}$ Hz.[1] for $\frac{3}{4}T$ The time interval is $\frac{3}{4}T = \frac{3}{4f} = \frac{3(2\pi)}{4(77)} = 0.061$ s.[1] ans(e)(i)1.A forced oscillation is one which is driven by an external force such that energy is supplied to the oscillation.[1](e)(i)2.The effect illustrated is called resonance.[1](e)(i)same starting point and lower graph peak maximum amplitude at same / lower frequency within original shape[1](a)(i)At constant pressure, $V \propto T$ [1] for correct V_2 $V_{\alpha} T$ $V_{\alpha} = \frac{T_1}{T_2}$ [1] for substitution
The time interval is $\frac{\sigma}{4}T = \frac{\sigma}{4f} = \frac{1}{4(77)} = 0.061 \text{s.}$ Image: the force of the second
such that energy is supplied to the oscillation.[1](e)(i)2.The effect illustrated is called resonance.[1](e)(ii)same starting point and lower graph peak maximum amplitude at same / lower frequency within original shape[1](a)(i)At constant pressure, $V \propto T$ [1] for correct V_2 [4] for
(e)(ii)same starting point and lower graph peak maximum amplitude at same / lower frequency within original shape[1] [1](a)(i)At constant pressure, $V \propto T$ [1] for correct V2 [4] for
(a)(i)Carne claring point and lower graph pointImage: Constant graph pointmaximum amplitude at same / lower frequency within original shape[1](a)(i)At constant pressure, $V \propto T$ [1] for correct V2
(a)(i) At constant pressure, $V \propto T$ [1] [1] for correct V_2 [4] for
$V \propto T$
[4] for
$\frac{500}{V_2} = \frac{250}{180}$ [1] for answer
2
$V_2 = 360 \text{ cm}^3$
work done on gas $= -p\Delta V$ = $-(80 \times 10^3)(360 - 500) \times 10^{-6}$
= -(00 × 10)(000 - 000) × 10 = 11.2 J
(a)(ii) Using $pV=nRT$, $n = \frac{pV}{RT} = \frac{(80 \times 10^3)(500 \times 10^{-6})}{(8.31)(250)} = 0.01925 \text{ mol}$ [1] for substitution
$T = \frac{1}{RT} = \frac{1}{(8.31)(250)} = 0.01925$ mol [1] for answer
Change in internal energy,
$\Delta U = \frac{3}{2} nR \Delta T = \frac{3}{2} (0.01925)(8.31)(180 - 250) = -16.8 \text{ J}$
OR
Change in internal energy,
$\Delta U = \frac{3}{2} nR \Delta T = \frac{3}{2} p \Delta V$
$=\frac{3}{2}(80\times10^3)(360-500)\times10^{-6}=-16.8 \text{ J}$
(a)(iii) Using first law of thermodynamics, $\Delta U = Q + W$ [1] for answer (must be
$Q = \Delta U - W$ positive)
= -16.8 - 11.2
= -28.0 J
Hence, the amount of heat lost is 28.0 J.

9(b)(i)	Using $pV=nRT$,	[1] for
	$p = \frac{nRT}{V} = \frac{(0.01925)(8.31)(250)}{(360 \times 10^{-6})} = 111 \text{kPa}$	substitution
	V (360×10 ⁻⁰)	[1] for answer
0/h)/::)	Change in internal energy,	[1] correct
9(b)(ii)		explanation and
	$\Delta U = \frac{3}{2} nR \Delta T = \frac{3}{2} (0.01925)(8.31)(250 - 180) = 16.8 \text{ J}$	application of
	Since there is no work done on the gas as volume is constant, $\Delta U = Q$	$\Delta U = Q$
	$Q = mc \Delta T = 16.8$	[1] for
	16.8	substitution
	$c = \frac{16.8}{(0.23 \times 10^{-3})(250 - 180)} = 1043 \approx 1040 \text{ J kg}^{-1} \text{ K}^{-1}$	
	(0.20×10)(200 100)	[1] for answer
0/h)/:::)		[1] substitution
9(b)(iii)	$\frac{3}{2}nRT = \frac{1}{2}m_{\text{total}}\left\langle c^{2}\right\rangle$	
		[1] answer
	$c_{\text{r.m.s.}} = \sqrt{\frac{3nRT}{m}} = \sqrt{\frac{3(0.01925)(8.31)(250)}{(0.23 \times 10^{-3})}}$	
	(0.23×10^{-3})	
	= 722.2 ≈ 720 m s ⁻¹	
	The root-mean-square speed of the particles would remain the	[1]
9(b)(iv)	same.	[.]
	This is because the root-mean-square speed for each particle is	[1]
	only dependent on the temperature and not on the amount of	
	gas, given that the mass of each particle is the same.	
0(-)		[1] for each
9(c)		process
	pressure / kPa	
	↑	[-1] for missing
	111	axis labels
	(c)	
	(b) (C)	
	80 (a)	
	0 volume / cm ³	
	0 360 500	
	Since the work done by the gas during expansion is greater	[1]
9(d)	Since the work done by the gas during expansion is greater than the work done on the gas during compression, there is a	[1]
	<u>net work done by the gas</u> in each cycle.	
	Since there is no change in internal energy in each cycle, the	[1]
	<u>gas gains heat</u> in each cycle.	