* (# # John Top	Preliminary Exam	CONDARY SCHOOL nination ress / 5 Normal (Academic)
NAME		
CLASS		INDEX NUMBER
Science (C	hemistry)	5076/01, 5078/01
Paper 1 Multiple	e Choice	30 August 2022
Additional Mate	rials: OTAS	1 hour

1 hour

1145 – 1245

READ THESE INSTRUCTIONS FIRST

Write your name, register number and class in the spaces provided above.

Write in dark blue or black pen.

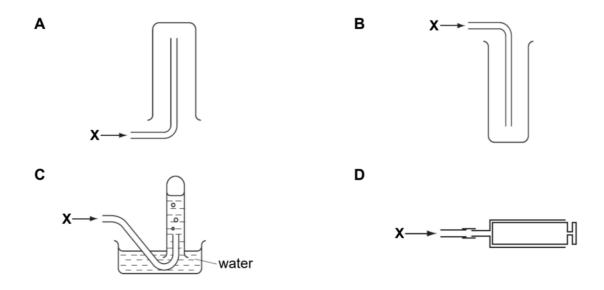
Do not use staples, paper clips, glue or correction fluid.

There are twenty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.

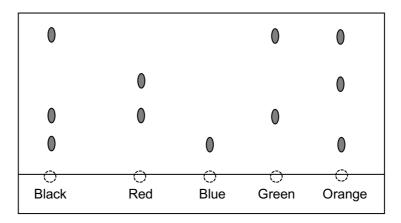
Choose the one you consider correct and record your choice in soft pencil on the OTAS.

Read the instructions on the OTAS very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.


A copy of the Data sheet is printed on page 9.

A copy of the Periodic Table is printed on page 10.

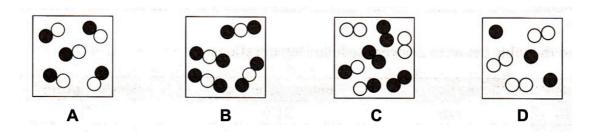

The use of an approved scientific calculator is expected, where appropriate.

1 A gas, X, is less dense than air and insoluble in water.

Which is not a suitable method to collect the gas?

2 Several inks were analysed using chromatography. The chromatogram is shown below.

Which dyes does the black ink contain?


- A blue and green
- **B** green and orange
- **C** red and blue
- **D** red and green

- **3** Which of the following chemicals could be used to distinguish between aqueous zinc sulfate and aqueous lead(II) nitrate?
 - 1 aqueous barium nitrate solution
 - 2 aqueous ammonia
 - 3 aqueous sodium hydroxide
 - A 2 only
 - **B** 1 and 2 only
 - **C** 1 and 3 only
 - **D** 1, 2 and 3
- 4 The formulae of four ions are shown below.

O²⁻ F⁻ Li⁺ Mg²⁺

Which statement about these ions is correct?

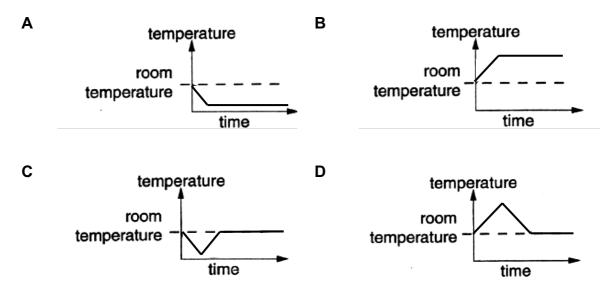
- **A** They all have the same number of protons in their nuclei.
- **B** They all have more electrons than protons.
- **C** They all have the electronic structure of a noble gas.
- **D** They all have the same number of electrons in their outer shells.
- 5 Which diagram shows a reaction occurring between two elements?

6 Calcium sulfite has the formula, CaSO₃.

What is the charge on the sulfite ion?

A 2- B 3- C 2+ D 3+

7 50 cm³ of ethane is completely burnt in oxygen.

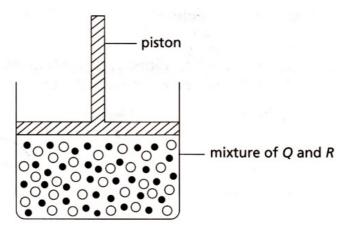

 $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$

Which volume of oxygen is used in this reaction at room temperature and pressure?

A 50 cm³

- **B** 100 cm³
- **C** 175 cm³
- **D** 350 cm³
- 8 The reaction between hydrochloric acid and sodium hydroxide is an exothermic reaction.

Which graph shows the change in temperature of the reaction mixture with time until there is no further change?


9 Which reaction shows the underlined substance acting as an oxidising agent?

- $\mathbf{A} \qquad 2\mathrm{SO}_2 + \mathrm{O}_2 \rightarrow 2\mathrm{SO}_3$
- **B** $2AuCl_3 + 3H_2O_2 \rightarrow 2Au + 6HCl + 3O_2$
- $\mathbf{C} \qquad \mathsf{Fe}_2\mathsf{O}_3 + 3\underline{\mathsf{CO}} \rightarrow 2\mathsf{Fe} + 3\mathsf{CO}_2$
- $\mathbf{D} \qquad \mathbf{C}l_2 + 2\mathbf{\underline{K}I} \rightarrow \mathbf{2KC}l + \mathbf{I}_2$

10 The gases Q and R react according to the equation below:

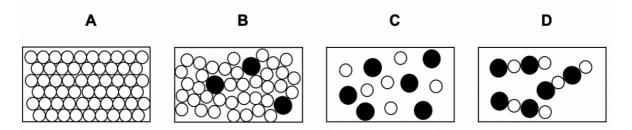
$$\mathsf{Q}(\mathsf{g}) + \mathsf{R}(\mathsf{g}) \to \mathsf{T}(\mathsf{g})$$

The reaction mixture is placed in a container at room temperature as shown in the figure below.

Which of the following actions can speed up the formation of gas T?

- **A** Adding an inert gas into the container.
- **B** Lowering the piston into the container.
- **C** Placing the container into an ice bath.
- **D** Removing part of the reaction mixture from the container, while keeping the volume constant.
- **11** What is the ionic equation for the reaction between aqueous sodium hydroxide and dilute nitric acid?
 - $\textbf{A} \quad H^{\scriptscriptstyle +} + OH^{\scriptscriptstyle -} \to H_2O$
 - $\mathbf{B} \quad \mathsf{HNO}_3 + \mathsf{OH}^{-} \to \mathsf{H}_2\mathsf{O} + \mathsf{NO}_3^{-}$
 - $\mathbf{C} \qquad \mathrm{Na^{+} + NO_{3}^{-} \rightarrow NaNO_{3}}$
 - $\textbf{D} \qquad Na^{\scriptscriptstyle +} + HNO_3 \rightarrow NaNO_3 + H^{\scriptscriptstyle +}$
- 12 Which row gives the correct classification of the four oxides?

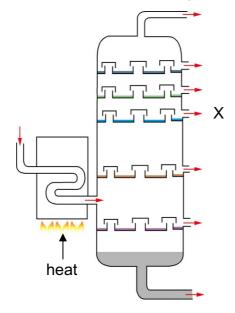
	SO ₂	MgO	CO	PbO	
Α	basic	acidic	acidic	amphoteric	
в	basic	amphoteric	acidic	basic	
С	acidic	basic	neutral	amphoteric	
D	acidic	neutral	neutral	basic	


- **13** Element X is in Group I of the Periodic Table. Which statement describes the property of X?
 - A A hard metal with low density
 - **B** A soft metal with low density
 - **C** A very reactive non-metal
 - **D** A non-metal that readily forms X⁻ ions
- **14** Metals P, Q, R and S are placed in salt solutions as shown in the table below.

	resul	t of placing r			
metal	salt of P	salt of Q	salt of R	salt of S	
Р		X	X	\checkmark	key
Q	\checkmark		X	\checkmark	\checkmark = reaction observed
R	\checkmark	\checkmark		\checkmark	X = no reaction observed
S	X	X	X		

What is the order of reactivity of the metals, from most reactive to least reactive?

- **A** P, Q, R, S
- **B** P, S, Q, R
- **C** R, P, S, Q
- **D** R, Q, P, S
- **15** The diagrams represent different arrangements of atoms.

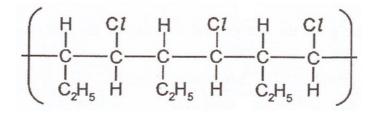

Which diagram represents an alloy?

- **16** Approximately 40% of all iron and steel are produced by recycling. Three statements about the recycling of metals are listed.
 - 1 Recycling reduces the amount of waste taken to landfill sites.
 - 2 Recycling causes less environmental damage than mining.
 - 3 Iron ore contains a higher percentage of iron than scrap steel.

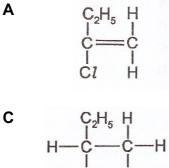
Which statements are possible reasons for recycling iron?

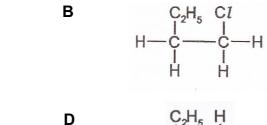
- A 1 and 2 only
- **B** 1 and 3 only
- **C** 2 and 3 only
- **D** 1, 2 and 3
- **17** The diagram shows the fractional distillation of petroleum.

Which statement describes the use of the fraction collected at X?


- **A** It is used as a feedstock for the petrochemical industry.
- **B** It is used as a lubricant for machines.
- **C** It is used as fuel for aircraft.
- **D** It is used as material for surfacing roads.

18 The formulae of three compounds are shown.


> C₂H₆ C_4H_8 $C_{6}H_{14}$


Which statement about these compounds is correct?

- Α They have different general formulae.
- В Their chemical properties are similar.
- С Their physical properties are the same.
- D They are members of the same homologous series.
- Which substance is polyunsaturated? 19
 - Α ethene
 - В margarine
 - С poly(ethene)
 - D vegetable oil
- 20 The diagram shows part of the structural formula of a polymer.

Which monomer is used to make this polymer?

Α

END OF PAPER

DATA SHEET

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic	Table of	Elements
--------------	----------	----------

Group																	
I	I											IV	V	VI	VII	0	
Image: New Sector Se												2 He ^{helium} 4					
3 Li lithium 7 11	4 Be beryllium 9 12		proton (atomic) number atomic symbol _{name} relative atomic mass					-				5 B boron 11 13	6 C carbon 12 14	7 N nitrogen 14 15	8 O oxygen 16 16	9 F fluorine 19 17	10 Ne ^{neon} 20 18
Na ^{sodium} 23	Mg ^{magnesium} 24											A <i>l</i> aluminium 27	Si ^{silicon} 28	P ^{phosphorus} 31	S ^{sulfur} 32	C1 ^{chlorine} 35.5	Ar ^{argon} 40
19 K potassium 39	20 Ca calcium 40	21 Sc scandium 45	22 Ti titanium 48	23 V vanadium 51	24 Cr chromium 52	25 Mn ^{manganese} 55	26 Fe iron 56	27 Co _{cobalt} 59	28 Ni ^{nickel} 59	29 Cu _{copper} 64	30 Zn ^{zinc} 65	31 Ga _{gallium} 70	32 Ge ^{germanium} 73	33 As ^{arsenic} 75	34 Se ^{selenium} 79	35 Br ^{bromine} 80	36 Kr ^{krypton} 84
37 Rb ^{rubidium} 85	38 Sr strontium 88	39 Y yttrium 89	40 Zr zirconium 91	41 Nb ^{niobium} 93	42 Mo molybdenum 96	43 Tc technetium -	44 Ru ^{ruthenium} 101	45 Rh ^{rhodium} 103	46 Pd palladium 106	47 Ag ^{silver} 108	48 Cd cadmium 112	49 In ^{indium} 115	50 Sn ^{tin} 119	51 Sb ^{antimony} 122	52 Te tellurium 128	53 I ^{iodine} 127	54 Xe _{xenon} 131
55 Cs caesium 133	56 Ba ^{barium} 137	57 – 71 Ianthanoids	72 Hf ^{hafnium} 178	73 Ta ^{tantalum} 181	74 W tungsten 184	75 Re ^{rhenium} 186	76 Os ^{osmium} 190	77 Ir iridium 192	78 Pt ^{platinum} 195	79 Au ^{gold} 197	80 Hg ^{mercury} 201	81 T <i>1</i> thallium 204	82 Pb ^{lead} 207	83 Bi ^{bismuth} 209	84 Po polonium —	85 At astatine –	86 Rn ^{radon}
87 Fr francium –	88 Ra ^{radium}	89 – 103 actinoids	104 Rf rutherfordium -	105 Db dubnium –	106 Sg seaborgium –	107 Bh ^{bohrium}	108 Hs hassium –	109 Mt meitnerium –	110 Ds darmstadtium –	111 Rg roentgenium –	112 Cn copernicium –		114 F <i>l</i> flerovium		116 Lv livermorium –		
lanthanoids 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71										71							
lanulanolus		La ^{Ianthanum} 139	Ce _{cerium} 140	Pr praseodymium 141	Nd neodymium 144	Pm promethium -	Sm _{samarium} 150	Eu ^{europium} 152	Gd _{gadolinium} 157	Tb ^{terbium} 159	Dy _{dysprosium} 163	Ho ^{holmium} 165	Er ^{erbium} 167	Tm ^{thulium} 169	Yb _{ytterbium} 173	Lu ^{Iutetium} 175	
actinoids		89 Ac actinium –	90 Th ^{thorium} 232	91 Pa protactinium 231	92 U uranium 238	93 Np neptunium –	94 Pu plutonium -	95 Am ^{americium}	96 Cm curium –	97 Bk berkelium	98 Cf californium –	99 Es einsteinium –	100 Fm ^{fermium}	101 Md mendelevium –	102 No nobelium	103 Lr Iawrencium –	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.)