PRESBYTERIAN HIGH SCHOOL

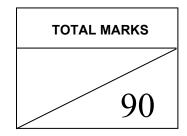
MATHEMATICS PAPER 2

16 August 2023

PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL

PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL

2 hours 15 minutes


2023 SECONDARY FOUR EXPRESS PRELIMINARY EXAMINATION

MARKING SCHEME

	For Examiner's Use										
Qn	1	2	3	4	5	6	7	8	9	10	Marks Deducted
Marks											

Category	Accuracy	Symbols	Others
Question No.			

Setter: Mr Tan Lip Sing Vetter: Mdm Cynthia Chua

Wednesday

4052/02

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl Surface area of a sphere = $4\pi r^2$ Volume of a cone = $\frac{1}{3}\pi r^2 h$ Volume of a sphere = $\frac{4}{3}\pi r^3$ Area of triangle ABC = $\frac{1}{2}ab\sin C$ Arc length = $r\theta$, where θ is in radians Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

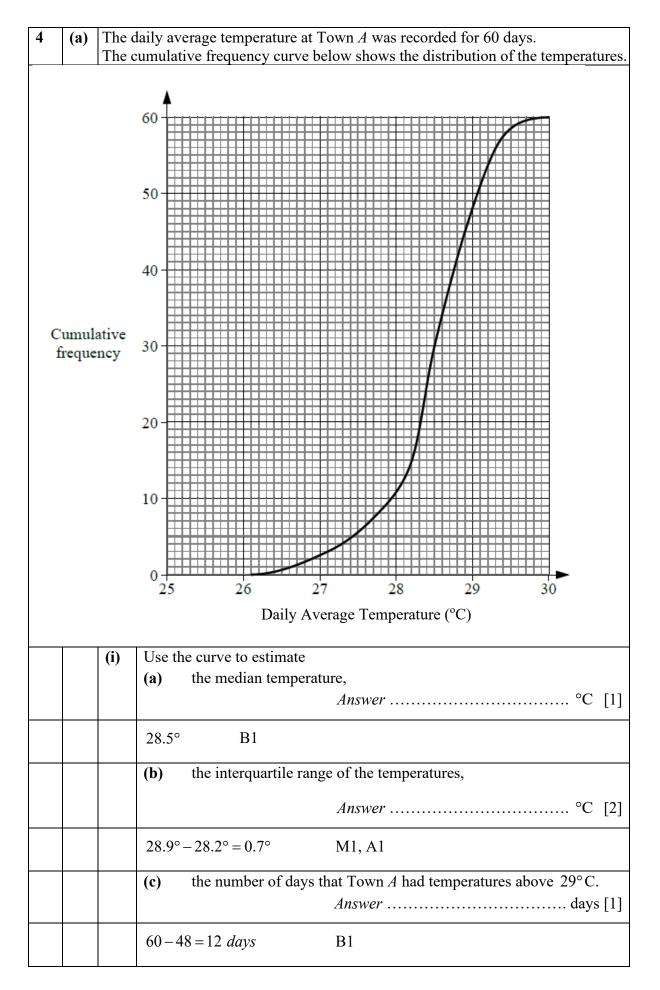
Statistics

Mean =
$$\frac{\sum fx}{\sum f}$$

Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$

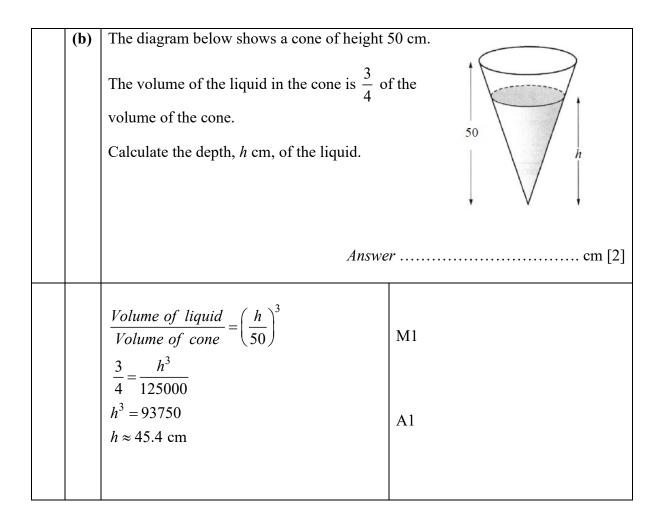
1	(a)	Rearrange the formula $c = \frac{d^2 + 5}{d^2 - 3}$ to make <i>d</i> the subject.					
			Answer $d =$				
		$c = \frac{d^{2} + 5}{d^{2} - 3}$ $c(d^{2} - 3) = d^{2} + 5$ $cd^{2} - 3c = d^{2} + 5$ $cd^{2} - d^{2} = 5 + 3c$ $d^{2}(c - 1) = 5 + 3c$ $d^{2} = \frac{5 + 3c}{c - 1}$ $d = \pm \sqrt{\frac{3c + 5}{c - 1}}$	M1 M1 A1				
	(b)	Write as a single fraction in its simpl	lest form $\frac{3}{(x-2)^2} - \frac{1}{2-x}$.				
			Answer				
		$\frac{\frac{3}{(x-2)^2} - \frac{1}{2-x}}{=\frac{3}{(x-2)^2} + \frac{1}{x-2}}$ $=\frac{3+x-2}{(x-2)^2}$ $=\frac{x+1}{(x-2)^2}$	M1 A1				

(c)	Solve these simultaneous equations.							
	5x + 3y = 14							
	3x + 5y = 18							
	You must show your working.							
	Answer $x = \dots$	or $y = \dots$ [3]						
	5x + 3y = 14(1)							
	3x + 5y = 18(2)							
	$(1): y = \frac{14 - 5x}{3} \dots \dots (3)$	M1						
	Substitute (3) into (2) :							
	$3x + 5\left(\frac{14 - 5x}{3}\right) = 18$							
	9x + 70 - 25x = 54							
	<i>x</i> = 1	A1						
	<i>y</i> = 3	A1						
(d)	Solve the equation $\frac{2x-1}{5x-6} = \frac{1}{2x-3}$.							
	Answer $x = \dots$	or $x =$						
	$\frac{2x-1}{5x-6} = \frac{1}{2x-3}$ (2x-1)(2x-3) = 5x-6 4x ² -6x-2x+3 = 5x-6 4x ² -13x+9 = 0 (4x-9)(x-1) = 0 x = 2\frac{1}{4} or x = 1	M1 M1 (Factorise) A1						


2	(a)	fron dolla fee o Calo	fore departing London for Singapore, Peter bought 3000 Singapore dollars m the bank. The exchange rate between British pounds (£) and Singapore llars (\$) was $\pounds 1 = \$1.71$. He also had to pay the bank an additional commission of 1.5% for the exchange of currency. lculate the total amount of pounds, inclusive of commission, he paid the bank. we your answer correct to the nearest pound.								
			Ansı	<i>wer</i> £[2]							
			al amount before commission $\frac{000}{.71} = \pounds 1754.385965$	M1							
		=17	al amount inclusive of commission 754.385965×1.015 1781	A1							
	(b)	the 8	r bought a laptop while he was in Singapore 8% GST (Goods & Services Tax) for the lap on the original price. The laptop's original p	otop after getting a discount of							
		(i)	Find the GST amount paid for the laptop.								
			Answe	r[2]							
			$108\% = \$664.20$ $8\% = \$664.20 \times \frac{8}{108} = \49.20	M1							
			GST amount = \$49.20	A1							
		(ii)	Calculate the value of <i>A</i> .								
			Answer	<u>A=% [2]</u>							
			Discounted price before GST								
			= 664.20 - 49.20 = \$615.00								
			150	M1							
			$A = \frac{135}{750} \times 100\% = 18\%$	A1							

(c)	inter	y invests \$20 000 in an endowment plan that offers 4% per year compound rest. How much interest will she receive after 10 years? Give your answer ect to the nearest cent.				
		A	<i>nswer</i> \$[2			
		Total amount after 10 years $= 20000 \left(1 + \frac{4}{100}\right)^{10}$ $= \$29604.89$ Interest received	М1			
		= 29604.89 - 20000 = \$9604.89	A1			
(d)	A m	hap of a province has a scale of 1 : 500 000.				
	(i)	The length of an expressway on the ma Calculate the actual length, in kilometr	-			
		1 cm : 5 km 25 cm : 125 km Actual length = 125 km	B1			
	(ii)	-	a reservoir is 180 km ² . e area, in square centimetres, of the reservoir on the map. <i>Answer</i>			
		$(1 \text{ cm})^2 : (5 \text{ km})^2$ $1 \text{ cm}^2 : 25 \text{ km}^2$ Area on map $=\frac{180}{25} = 7.2 \text{ cm}^2$	M1 A1			

3	The	variables x and y are connected by the equation $y = \frac{x^2}{5} + \frac{4}{x}$.									
	The table below shows some values of x and the corresponding values of y correct to 2 decimal places.									to	
	x		0.5	1	1.5	2	2.5	3	4	5	
	У	,	8.05	4.20	3.12	2.80	2.85	3.13	4.20	5.80	
	(a) On the grid provided, draw the graph of $y = \frac{x^2}{5} + \frac{4}{x}$ for $0.5 \le x \le 5$. Plot the points given in the table and join them with a smooth curve. [3]										
			_	oints corre	-	eurve.	B2 (0 B1	6 or 7 poin	nts correc	t – B1)	
	(b) By drawing a tangent, find the gradient of the curve at $x = 3$.								[2]		
		AnswerDraw the correct tangent line at $x = 3$.							[2]		
		Grad	dient =	$\frac{6-0.95}{7-0}$	≈ 0.721		M1	M1			
			(4	Accept 0.7	7 to 0.8)		A1				
	(c)	(i)	On th	e same gr	id, draw 1	the line y	$=7-\frac{1}{2}x$	for $0 \le x$;≤5.		[1]
			Draw	correct li	ne $y = 7$	$-\frac{1}{2}x$.	B1				
		(ii)	Write curve		e x-coordi	nates of t	he points	where thi	s line inte	ersects the	;
					Answ	ver $x = \dots$		or			[2]
	$\begin{array}{c} x = 0.6 or x = 4.4 \\ (0.55 - 0.65) (4.35 - 4.45) \end{array} \qquad $										


	(iii)	Find the equation, in the form $2x^3 + ax^2 + bx + c = 0$, which is satisfied by the values of x found in (c)(ii).				
		Answer	[2]			
		$\frac{x^2}{5} + \frac{4}{x} = 7 - \frac{x}{2}$ $2x^3 + 40 = 70x - 5x^2$	M1			
		$2x^{3} + 40 = 70x - 5x^{2}$ $2x^{3} + 5x^{2} - 70x + 40 = 0$	A1			
(d)	-	your graph to find the values of x in the rate $x^{2} + \frac{4}{x} - 2 = 3$.	unge $0 \le x \le 5$ for which			
		<i>Answer x</i> =	or [2]			
	Draw $x = 0$	$x^{2} + \frac{4}{x} - 2 = 3$ $\frac{4}{x} = 5$ w the line $y = 5$, from the graph, y = 5, from t	B1, B1			

	(ii)	The interquartile range of the terr Use this information to comment temperature at Town A and at To	t on one difference between the			
		The temperatures at Town B temperatures at Town A. OR The temperatures at Town B temperatures at Town A.	have a larger spread than the B1 were less consistent than the			
(b)	Box A car Next	A contains 6 red cards, 4 blue cards and 2 green cards. 3 contains 3 red cards and 5 blue cards. d is drawn at random from Box A and put into Box B. a card is drawn at random from Box B. as a fraction in its simplest form, the probability that				
	(i)	two green cards are drawn,	Answer[1]			
		$P = \frac{2}{9} \times \frac{1}{9} = \frac{1}{54}$	B1			
	(ii)	neither of the cards is green,				
			Answer[1]			
		$P = \frac{10}{12} \times 1 = \frac{5}{6}$	B1			
	(iii)	the two cards are of the same co	blour.			
		<i>Answer</i>				
		P = P(RR) + P(BB) + P(GG)				
		$=\frac{6}{12}\times\frac{4}{9}+\frac{4}{12}\times\frac{6}{9}+\frac{1}{54}$	M1			
		$=\frac{25}{54}$	A1			

5	(a)	The	diagram shows a								
		paral	lelogram ABCD		A	B					
		with	CD produced to E.		/						
		r ·	the point of								
			he point of								
			section of <i>BE</i> and	1							
		AD.		/		. /					
			E	$E \xrightarrow{I} D \xrightarrow{I} C$							
		(i)	Show that triangle <i>BAF</i> and triangle	EDF	are sim	ilar.					
			Give a reason for each statement you	make.							
						[2]					
			In ΔBAF and ΔEDF ,								
			$\angle BAF = \angle EDF$ (Alternate angles, A	B / / EI	D)	M1 (at least one					
			$\angle AFB = \angle DFE$ (Vertically opposite	angles)	correct reason)					
			$\therefore \Delta BAF$ and ΔEDF are similar.			A1 (with correct					
			(AA Similarity Test)			reason)					
			(AA Similarity Test)								
		(ii)	State another triangle that is similar to <i>BAF</i> and <i>EDF</i> .								
			Answer Tria	ingle .	•••••	[1]					
			Triangle ECB.	B1							
		(iii)	The ratio $ED: DC = 2:3$.								
			Find the ratio $BC: AF$.								
			Answe	er		. :[1]					
			5:3	B1							
		(iv)	Given that the area of triangle EDF i BAF .	s 9.5 c	² , fin	d the area of triangle					
				<i>Answer</i>							
			Answer		•••••	ciii [2]					
			Area of $\triangle BAF$ (3) ²								
			$\frac{Area \ of \ \Delta BAF}{Area \ of \ \Delta EDF} = \left(\frac{3}{2}\right)^2$		M1						
			Area of $\Delta BAF = \frac{9}{4} \times 9.5 = 21.375$ cm	2	A1						

6	such such It is \overrightarrow{DP}	that $\frac{1}{2}$ that $\frac{1}{2}$ given $= 2\mathbf{a} + \mathbf{b}$	gram below, P is a point on DC, DC = 2DP and X is a point on BP 3BX = 2BP. that $\overrightarrow{AD} = 4\mathbf{a}$, $\overrightarrow{AB} = 3\mathbf{b}$, and $-3\mathbf{b}$. The set of the s	P 2a + 3b X D 4a B 3b A
	(a)	Ехрі	ess, as simply as possible, in terms	
		(i)	\overrightarrow{BP} ,	
				Answer[1]
			$\overrightarrow{BP} = \overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{DP}$ $= -3\mathbf{b} + 4\mathbf{a} + 2\mathbf{a} + 3\mathbf{b}$ $= 6\mathbf{a}$	B1
		(ii)	\overrightarrow{AX} ,	
			, 	Answer[2]
			$\overrightarrow{BX} = \frac{2}{3} \overrightarrow{BP} = 4\mathbf{a}$ $\overrightarrow{AX} = \overrightarrow{AB} + \overrightarrow{BX}$	M1
			= 3 b + 4 a	A1
		(iii)	\overrightarrow{AC} .	
				Answer[2]
			$\overrightarrow{DC} = 2\overrightarrow{DP} = 4\mathbf{a} + 6\mathbf{b}$ $\overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{DC}$ $= 4\mathbf{a} + 4\mathbf{a} + 6\mathbf{b}$	M1
			$= 4\mathbf{a} + 4\mathbf{a} + 6\mathbf{b}$ = $8\mathbf{a} + 6\mathbf{b}$ or $2(4\mathbf{a} + 3\mathbf{b})$	A1

(b)	Explain whether the points A, X and C lie on the same straight line.							
			[2]					
	$\overrightarrow{AC} = 2(4\mathbf{a} + 3\mathbf{b}) = 2\overrightarrow{AX}$ AX is parallel to AC and since A is a common	r	М1					
	point, A, X and C lie on the same straight line.	ł	A1					
(c)	Given that the area of triangle $BCP = 24 \text{ cm}^2$,	find th	e area of triangle <i>CXP</i> .					
	Answer		cm ² [2]					
	Area of $\triangle CXP = \frac{1}{3}$ Area of $\triangle BCP$ = $\frac{1}{3}(24)$ = $8 \ cm^2$	M1 A1						

7	and <i>ABC</i>	diagram shows four towns A, B, C D on a piece of horizontal land. CD is a trapezium. $AB = 0.9$ km, $AD =$ km and angle $BAD = 150^{\circ}$.	1.2 km	A 0.9 km B	
	(a)	Calculate the distance between Town <i>B</i> and Town <i>D</i> . <i>Answer</i>			
	$(BD)^{2} = (1.2)^{2} + (0.9)^{2} - 2(1.2)(0.9)\cos 150^{\circ}$ = 4.12061 BD = 2.0299 \approx 2.03 km		cos150°	M2 (all correct) M1 (2 out of 3 correct) A1	
(b) Calculate the value of angle <i>BDC</i> .		° [2]			
		$\frac{\sin \angle BDA}{0.9} = \frac{\sin 150^{\circ}}{2.0299}$ $\sin \angle BDA = 0.22168$ $\angle BDA = 12.808^{\circ} \approx 12.8^{\circ}$	M1		
		Since ABCD is a trapezium, $\angle ADC = 180^{\circ} - 150^{\circ} = 30^{\circ}$ $\angle BDC = 30^{\circ} - 12.808^{\circ}$ $= 17.192^{\circ} \approx 17.2^{\circ}$	A1		
	(c)	c) Calculate the bearing of <i>D</i> from <i>B</i> . <i>Answer</i>		° [2]	
		$\angle ABD = \angle BDC = 17.192^{\circ}$ Bearing of <i>D</i> from <i>B</i> $= 270 - 17.192^{\circ}$ $\approx 252.8^{\circ}$	M1 A1		

(d)	A tower is standing at Town <i>B</i> . The greatest angle of elevation of the top of the tower, <i>T</i> , from the path <i>CD</i> is 18°. Find the height of the tower in metres. <i>Answer</i>	
	Let the shortest distance from <i>B</i> to <i>CD</i> be <i>d</i> km. $\sin \angle BDC = \frac{d}{2.0299}$ $d = 2.0299 \sin 17.192^{\circ}$ $= 0.599987 \ km$ Let <i>h</i> be the height of the tower.	M1
	$\tan 18^{\circ} = \frac{h}{0.599987}$ h = 0.599987 tan 18° = 0.194947 km	M1
	(d)	The greatest angle of elevation of the top of the to 18°. Find the height of the tower in metres. Answer Let the shortest distance from B to CD be d km. $\sin \angle BDC = \frac{d}{2.0299}$ $d = 2.0299 \sin 17.192^{\circ}$ $= 0.599987 \ km$ Let h be the height of the tower. $\tan 18^{\circ} = \frac{h}{0.599987}$ $h = 0.599987 \tan 18^{\circ}$

8	Jam	tes bought some essential oil for \$720 at x per litre.		
	(a)	Write an expression, in terms of x , for the number of litres of essential oil he bought.		
		Answer litre		
		$\frac{720}{x}$ litres	B1	
	(b)	Due to a leakage in the container, 5 litres of essential oil was lost. Tames sold the remaining essential oil at \$2 per litre more than what he had paid for. Write an expression, in terms of x , for the amount of money he received from the sale of essential oil. Answer \$		
		$\$\left(\frac{720}{x}-5\right)(x+2)$	B1	
	(c)	Given that James made a profit of \$100, write down an equation in x to represent this information and show that it reduces to $x^2 + 22x - 288 = 0$.		
		$\left(\frac{720}{x}-5\right)(x+2)-720=100$	M1	
		$720 + \frac{1440}{x} - 5x - 10 - 720 - 100 = 0$	M1	
		$\frac{1440}{x} - 5x - 110 = 0$ $-5x^2 - 110x + 1440 = 0$		
		$-3x^{2} - 110x + 1440 = 0$ $x^{2} + 22x - 288 = 0$	AG1	
	(d)			
		<i>Answer x</i> = or <i>x</i> =		
		$x = \frac{-22 \pm \sqrt{22^2 - 4(1)(-288)}}{2(1)}$ $= \frac{-22 \pm \sqrt{1636}}{2(1)}$	M1	
		$= \frac{2}{2}$ = 9.2237 or -31.2237 \approx 9.22 or -31.2	A1, A1	

(e)	Find, to the nearest litre, the amount of essential oil James sold.		
	Answer litres [2]		
	$\frac{720}{9.2237} - 5 = 73.09 \approx 73$ litres	M1, A1	

	Table 1: Income Tax Rate			
	Chargeable Income	Rate (%)	Gross Tax Payable (\$)	
	On the first \$120,000	-	7,950	
On the next \$40,000		15	6,000	
	On the first \$160,000	-	13,950	
	On the next \$40,000	18	7,200	
	On the first \$200,000	-	21,150	
	On the next \$40,000	19	7,600	
On the first	On the first \$240,000	-	28,750	
	On the next \$40,000	19.5	7,800	
(a)	Henry enjoyed a total tax relief of \$15 000 and paid \$14 130 of income tax for the year of assessment 2022. Calculate his annual income in 2022. [Annual income = Chargeable income + tax relief] <i>Answer</i> \$			
	Let the chargeable incom $14130 = 13950 + (A \times 189)$ A = \$1000		A) M1	
	Annual income $=$ \$(1600)	000 + 1000 + 15000)	

	Henry recently got a pay rise and his income is now \$15 500 per month. He is keen to buy a private condominium which is priced at \$1 200 000. To afford this condominium, he needs to apply for a bank loan of \$800 000.					
	(b)	The maximum duration of a housing loan for private properties is up to 35 years or 65 years of age, whichever is lower. Given that Henry is 45 years old, find the maximum number of years Henry can loan from the bank.			-	
		Answer years [1]			years [1]	
		Maximum numb	er is $65 - 45 = 20$ years	B1		
	(c)	The loan from th The government	Henry decides to apply for a loan for the maximum duration allowed for his age. The loan from the bank is subject to a simple interest of 3.5% per annum. The government introduced the Total Debt Servicing Ratio (TDSR) to prevent individuals from over-borrowing.			
	 <u>Information about TDSR</u> Total Debt Servicing Ratio = <u>Total monthly debt repayment</u> Monthly income Total monthly debt repayment includes repayments for car loar personal loans, credit card expenditure, home loans and other le The maximum TDSR allowed is 55%. 			car loans,		
		His current monthly debt repayment is shown in the table below:			1	
			Туре	Amount (\$)	-	
			Car loan	1000		
			Credit card Expenditure	1000		
			Personal loans	1000		
By considering the TDSR ratio, will the bank approve his loan requ Justify your answer and show your calculations clearly.						

Interest on housing loan for 1 year = $\$800000 \times 0.035 = \$28\ 000$ Interest on housing loan for 20 years	M1
$= $28\ 000 \times 20 = $560\ 000$	M1
Total debt (loan + interest) = \$(800 000 + 560 000) = \$1360 000	M1
Monthly debt repayment for housing loan over 20 years = $\$1360\ 000 \div (12 \times 20) = \5666.67	M1
Maximum debt allowable per month under TDSR $=$ \$15 500 \times 0.55 $=$ \$8525	M1
Henry's total monthly debt = \$(5666.67 + 3000) = \$8666.67	M1
Since Henry's monthly debt of \$8666.67 has exceeded the maximum debt allowable per month (\$8525) under the TDSR, the bank will not approve his loan.	A1