Anglo-Chinese School (Independent)

Year 5 Promotional Examination 2022 INTERNATIONAL BACCALAUREATE DIPLOMA PROGRAMME CHEMISTRY HIGHER LEVEL

PAPER 1

Monday

12th September 2022

1 hour

Additional materials:

Multiple choice answer sheet Soft clean eraser Soft pencil (type 2B recommended)

INSTRUCTIONS TO CANDIDATES

Do not open this booklet until you are told to do so.

Shade your Candidate number on the multiple choice answer sheet provided.

There are **forty** questions in this paper. Answer **all** the questions. For each question there are four possible answers, A, B, C and D. Choose the one you consider correct and record your choice in **soft pencil** on the multiple choice answer sheet.

INFORMATION FOR CANDIDATES

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the periodic table is provided for reference on Page 2 of the examination paper.

Calculators are **not** allowed to be used in this paper.

This question paper consists of <u>19</u> printed pages, including the cover page.

								The	Perio	dic Ta	ıble							
10201	-	2	ŝ	4	S	9	7	ß	თ	10	÷	12	13	4	15	16	17	18
*	– H ⁰			At	omic numt Flement	ber											L	2 He 4.00
(1)	ς. α Γ α Γ α α α α α α	4 86 9.01	Г	Relati	ive atomic	mass						<u> </u>	5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
~7	11 22.9	12 12 19 24.31	[<u> </u>	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
4	39.4 7 19	20 Ca 10 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.63	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.90
43	37 37 85.4	. 38 38 17 87.62	39 ⊀ ≮ 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.96	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
Ű	55 Cs 132.(56 Ba 91 137.3	57 † La 3 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
~	87 Fr (223	88 Ra 3) (226)	89‡ Ac (227)	104 Rf (267)	105 Db (268)	106 Sg (269)	107 Bh (270)	108 Hs (269)	109 Mt (278)	110 Ds (281)	111 Rg (281)	112 Cn (285)	113 Unt (286)	114 Uug (289)	115 Uup (288)	116 Uuh (293)	117 Uus (294)	118 Uuo (294)
			÷	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 H o 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97	
			#	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

- 1. What is the mass of methane (CH₄) that contains 4.80×10^{23} atoms of hydrogen? Avogadro's constant, N_A: 6.02×10^{23} mol⁻¹
 - A. 2.4 g
 - B. 3.2 g
 - C. 12.8 g
 - D. 13.3 g
- 20 cm³ of a gaseous hydrocarbon was burnt in 150 cm³ of oxygen. After cooling to room temperature, the residual gaseous products occupied a volume of 110 cm³. The gas was then bubbled through aqueous calcium hydroxide, and it was reduced to 30 cm³. What is the molecular formula of the hydrocarbon?
 - A. C₃H₆
 - B. C₃H₈
 - C. C₄H₈
 - $D. \quad C_4 H_{16}$
- 3. Which element undergoes reduction in the following reaction?

 $(\mathsf{NH}_4)_2\mathsf{Cr}_2\mathsf{O}_7\ (s)\to\mathsf{N}_2\ (g)+4\mathsf{H}_2\mathsf{O}\ (l)+\mathsf{Cr}_2\mathsf{O}_3\ (s)$

- A. Cr
- В. Н
- C. N
- D. O

4. What is the coefficient for H⁺ when the following equation is balanced using the smallest possible whole numbers?

5. Which graph correctly describes the behaviour of a fixed mass of an ideal gas? (*T* is measured in K.)

- B. I and III only
- C. II and III only
- D. I, II and III

6. Flask X contains 1 dm³ of helium at 2.00 x 10³ Pa and flask Y contains 2 dm³ of neon at 1.00 x 10³ Pa. The flasks are later connected at a constant temperature, what is the final pressure?

- A. 1.33×10^3 Pa
- B. 1.50×10^3 Pa
- $C. \qquad 1.67\times 10^3 \ Pa$
- $D. \qquad 2.00\times 10^3 \ Pa$
- 7. Which equation represents a reaction that occurs under standard conditions?
 - A. 2 LiBr (aq) + I_2 (aq) \rightarrow 2 LiI (aq) + Br₂ (aq)
 - B. 2 KF (aq) + Cl_2 (aq) \rightarrow 2 KCl (aq) + F_2 (aq)
 - C. 2 LiCl (aq) + I_2 (aq) \rightarrow 2 LiI (aq) + Cl₂ (aq)
 - D. $2KBr(aq) + Cl_2(aq) \rightarrow 2 KCl(aq) + Br_2(aq)$
- 8. Which combination of statements about the oxides of period 3 elements is correct?

	State a	at room tempe	erature	Electrical conductivity in molten state		
	Na ₂ O	Al ₂ O ₃	P ₄ O ₁₀	Na ₂ O	Al ₂ O ₃	P ₄ O ₁₀
Α.	solid	solid	gas	good	good	good
В.	solid	solid	solid	good	good	poor
C.	solid	liquid	liquid	good	poor	poor
D.	solid	solid	solid	poor	poor	good

- 9. Which statements about reactivity are correct?
 - I. Potassium reacts more vigorously than sodium with chlorine.
 - II. Lithium reacts more vigorously than potassium with water.
 - III. Fluorine reacts more vigorously than bromine with potassium iodide solution.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
 - **10.** Which ion is colourless?
 - A. $[Sc(H_2O)_6]^{3+}$
 - B. $[Cr(H_2O)_6]^{3+}$
 - C. $[Fe(H_2O)_6]^{3+}$
 - D. [Fe(CN)₆]³⁻
- **11.** Which statements are correct for the complex ion [Cu(EDTA)]²⁻?
 - I. The oxidation number of Cu in the complex ion is +2.
 - II. The coordination number of the Cu ion is 6.
 - III. The shape of the complex ion is linear.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- **12.** Which properties of transition elements are **not** shown by s-block elements such as calcium?
 - I. Transition metal ions have variable oxidation states.
 - II. Transition metal ions can act as oxidising agents in aqueous solution.
 - III. Transition metals can be used as catalysts for industrial processes.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **13.** Which combination correctly describes the geometry of XeF_3^+ ?

	Electron domain geometry around Xe	Molecular geometry around Xe
Α.	Octahedral	T-shape
В.	Trigonal bipyramidal	Square planar
C.	Octahedral	Square planar
D.	Trigonal bipyramidal	T-shape

14. Which of the following pairs of molecules are both planar and polar?

- A. BeCl₂ and NO₂
- B. SiO₂ and CO₂
- C. BF_3 and NH_3
- D. ClF_3 and SO_2

- 15. Molecular dimerization can be described as the process in which two identical molecules combine to give a single product. Some examples of dimers include Al₂Cl₆ and N₂O₄. Which of the following descriptions about the two dimers is **incorrect**?
 - A. Al_2Cl_6 is a planar molecule.
 - B. The nitrogen–oxygen bond angle is 120°.
 - C. Al_2Cl_6 is formed by two dative bonds between Al and Cl.
 - D. N_2O_4 is a non-polar molecule.
- **16.** Trimethoprim (TMP) is used for the treatment and prevention of urinary tract infection. It has the following structure.

In which sequence is the bond angles quoted in decreasing order?

- A. x > y > w > z
- B. x > y > z > w
- C. y > w > z > x
- D. y > z > w > x

17. The standard enthalpy changes for two reactions are given below.

4Ag (s) + O₂ (g)
$$\rightarrow$$
 2Ag₂O (s) $\Delta H^{\ominus} = -62 \text{ kJ}$
C (s) + O₂ (g) \rightarrow CO₂ (g) $\Delta H^{\ominus} = -394 \text{ kJ}$

What is the standard enthalpy change in kJ when 108 g of silver is obtained from the reduction of silver(I) oxide?

$$2Ag_2O(s) + C(s) \rightarrow 4Ag(s) + CO_2(g)$$

- A. –332
- В. –83
- C. –456
- D. -114
- **18.** Four reactions of the type shown are studied at the same temperature.

$$X (g) + Y (g) \rightarrow Z (g)$$

Which is the correct reaction pathway diagram for the reaction that would proceed most rapidly and with good yield?

19. The standard enthalpy change for this reaction is $+142 \text{ kJ mol}^{-1}$.

$$\frac{3}{2}O_{2}(g) \to O_{3}(g)$$

What is the bond enthalpy of the oxygen-oxygen bond in O_3 , given that the bond enthalpy of O=O is 498 kJ mol⁻¹?

- A. $\frac{498 (142)}{2}$ B. $\frac{498 + (142)}{3}$ C. $\frac{\frac{3}{2} \times 498 - (142)}{2}$ D. $\frac{\frac{3}{2} \times 498 - (142)}{3}$
- 20. Which processes are more exothermic for Mg than that of Ca?

I.
$$X(g) \rightarrow X(s)$$

- II. $X^{2+}(g) + O^{2-}(g) \rightarrow XO(s)$
- III. $X^{2+}(g) \rightarrow X^{2+}(aq)$
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **21.** Hand warmers, when activated, generate their warmth by the spontaneous crystallisation of sodium ethanoate from a supersaturated solution.

Which row describes the entropy changes involved?

	$\Delta \mathcal{S}_{system}$	$\Delta \mathcal{S}_{ ext{surroundings}}$	$\Delta S_{ ext{universe}}$
A.	decrease	decrease	decrease
B.	decrease	increase	increase
C.	increase	decrease	increase
D.	increase	increase	decrease

22. The Born-Haber cycle for barium oxide is shown below:

Which value represents the first electron affinity of oxygen atom, in kJ mol⁻¹, given that the second electron affinity is +753 kJ mol⁻¹?

- A. (299 + 1468 + 175) + (-554) + 3054 + 753
- B. (299 + 1468 + 175) + (-554) + 3054 753
- C. 3054 175 299 1468 (-554) 753
- D. 3054 175 299 1468 (-554) + 753

23. When steam is condensed, 44000 Jmol⁻¹ of heat is given off.

What is the entropy change, in JK^{-1} , when 1 mole of steam is condensed at 100°C and 1 bar pressure?

$$H_2O(g) \rightleftharpoons H_2O(l)$$

B.
$$+\frac{44000}{373}$$

C. $-\frac{44000}{100}$
D. $-\frac{44000}{100}$

+ -

Α.

44000 100

373

24. In the late 1700s, Becher proposed the phlogiston theory which stated that combustible materials contain phlogiston. When burnt, these materials release phlogiston into the air. A more combustible material contains more phlogiston.

Lavoisier and others eventually put forward the oxygen theory as a better explanation of combustion observations. This theory suggested that burning something meant reacting it with oxygen in the air.

This can be considered as a *paradigm shift*.

Which statements are correct about 'paradigm shift'?

- I. New empirical evidence is one factor that can lead to paradigm shifts.
- II. It is a change in the understanding of essential scientific concepts.
- III. It supports the fact that scientific theories can be proven.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

- 25. Which of the following will not increase the rate of a reaction in an aqueous solution?
 - A. Increasing temperature in an endothermic reaction
 - B. Increasing the surface area of a solid reactant added to the solution
 - C. Increasing the pressure on the aqueous solution
 - D. Increasing the rate of stirring on the reaction mixture
- 26. Which of the following factors will affect the rate of a chemical reaction?
 - I. The frequency at which the reactants collide effectively.
 - II. The orientation of the reactants when the reactants collide.
 - III. The kinetic energy at which the particles collide.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **27.** Which properties can be monitored to determine the rate of reaction for the chemical reaction below?

 $5H_2O_2 + 2MnO_4^- + 6H^+ \rightarrow 5O_2 + 2Mn^{2+} + 8H_2O$

- I. Change in pH
- II. Change in colour
- III. Change in mass
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

28. The graph shows the distribution of kinetic energies for a reaction involving two gases.

29. The following reaction is first order with respect to P and second order with respect to Q.

 $\mathbf{P} + \mathbf{Q} \rightarrow \mathbf{R} + \mathbf{S}$

Which of the following statements is correct?

- A. The reaction occurs in a one-step mechanism.
- B. The reaction has an overall order of 3.
- C. The unit for rate constant in the rate equation is mol³ dm⁻⁹.
- D. The initial rate of reaction doubles when the initial concentration of **Q** doubles.

30. Ethyl ethanoate, CH₃CO₂CH₂CH₃, undergoes a slow acid-catalysed hydrolysis in water where the concentration of acid in the solution remains constant. The rate equation is found to be

rate =
$$k$$
[CH₃CO₂CH₂CH₃]

When large excess of HCl is reacted with 0.1 mol dm^{-1} of ethyl ethanoate, the half-life was found to be 62 min.

Another reaction was repeated using 0.2 mol dm⁻³ of ethyl ethanoate. How long does it take for the concentration of ethyl ethanoate to fall to 0.0125 mol dm⁻³?

- A. 62 min
- B. 124 min
- C. 186 min
- D. 248 min
- 31. Experiments were conducted to investigate the rate equation involving reactants X and Y.

$$2\mathbf{X} + \mathbf{Y} \rightarrow \mathbf{W} + \mathbf{Z}$$

Two graphs were plotted based on the experimental results obtained.

What is the rate equation for the reaction?

- A. rate = k[X]
- B. rate = k[Y]
- C. rate = $k[\mathbf{X}][\mathbf{Y}]$
- D. rate = $k[\mathbf{X}][\mathbf{Y}]^2$

- 32. Which is the first step in the CFC-catalysed destruction of ozone in UV light?
 - $\mathsf{A.} \qquad \mathsf{CClF}_2 \to \mathsf{CClF}_{2^+} + \mathsf{Cl}^-$
 - B. $CClF_2 \rightarrow CClF_2 + Cl$
 - C. $CClF_2 \rightarrow CCl_2F^+ + F^-$
 - D. $CClF_2 \rightarrow CCl_2F + F^{\bullet}$
- **33.** In the last century the Haber process was sometimes run at pressures of 1000 atm and higher. Now it is commonly run at a pressure of 200 atm.

What is the reason for this change?

- A. An iron catalyst is used.
- B. Maintaining the higher pressure is more expensive.
- C. The equilibrium yield of ammonia is increased at lower pressure.
- D. The rate of the reaction is increased at lower pressure.
- **34.** If N_2O_4 gas is placed in a sealed vessel, the following equilibrium is established.

$$N_2O_4$$
 (g) $\rightleftharpoons 2NO_2$ (g)

The forward reaction is endothermic.

Which of the following is true when the temperature is increased?

- I. The equilibrium constant increases.
- II. The concentration of NO₂ increases.
- III. The rate of the reverse reaction increases.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

35. Given that,

Equilibrium I:	$C(s) + O_2(g) \Longrightarrow CO_2(g)$	$K_{c1} = 3$
Equilibrium II:	$C(s) + \frac{1}{2}O_2(g) \Longrightarrow CO(g)$	$K_{c2} = 2$
Equilibrium III:	$CO(g) + \frac{1}{2}O_2(g) \Longrightarrow CO_2(g)$	$K_{\rm c} = ?$

What is the numerical K_c value for the Equilibrium III?

A.
$$\frac{\sqrt{2}}{3}$$

B. $\frac{2}{3}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{3}{2}$

- **36.** Which of the following reaction is true for a reaction with a K_c value of 1.00×10^{-5} at 298 K?
 - I. There are more reactants than products at equilibrium.
 - II. The reaction is non-spontaneous at 298 K.
 - III. ΔG^{\ominus} value changes with temperature.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 37. Which combination describes the system at equilibrium?

	Entropy	Gibbs free energy
A.	minimum	maximum
В.	minimum	minimum
C.	maximum	maximum
D.	maximum	minimum

38. Two compounds X and Y react to produce compound Z. The reaction is reversible.

 $\textbf{X} + \textbf{Y} \rightleftharpoons \textbf{Z}$

When **X** and **Y** are mixed in a closed system, a dynamic equilibrium is gradually established.

Which graph could represent the change in the rate of the forward and reverse reactions over time?

39. A student measured the change in mass on heating a sample of magnesium nitrate, Mg(NO₃)₂ (s). What is the mass loss?

Mass before heating: (2.347 ± 0.001) g Mass after heating: (1.997 ± 0.001) g

- A. (0.35 ± 0.001) g
- B. (0.35 ± 0.002) g
- C. (0.350 ± 0.002) g
- D. (0.350 ± 0.001) g

40. A group of students attempted to estimate the concentration of a solution of Fe²⁺ by pipetting fixed volumes of the solution into a flask, adding an excess of dilute sulfuric acid, and then titrating with a standard solution of potassium manganate(VII) from a burette. The volume of KMnO₄ solution required by one student was 0.2 cm³ lower than that of the other students.

Which of the following is a possible explanation for this discrepancy?

- A. The last drop of Fe^{2+} solution was blown from the pipette into the titration flask.
- B. The pipette was rinsed with deionised water instead of the solution of Fe^{2+} before the titration.
- C. The titration flask was rinsed with the solution of Fe²⁺ instead of deionised water before the titration.
- D. The burette was rinsed with deionised water instead of the solution of KMnO₄ before the titration.