For Examiner's Use

1	(a)

	Deductions
B is soluble in water	Not MgO, Al ₂ O ₃ , SiO ₂
Aq. solution of B reacts with Na_2CO_3 in 2:3 ratio to form $CO_2(g)$	Aq. solution of <u>B is acidic</u> (\checkmark) Since the reacting ratio is 2:3, the acid formed must be tribasic \therefore <u>B is P₄O₁₀/P₄O₆ [1]</u>
C is soluble in water	Not MgO and Al ₂ O ₃ , SiO ₂
Aq. solution of \boldsymbol{C} reacts with NH ₄ ⁺ to give NH ₃ (g)	Aq. solution of <u>C is basic</u> (✓) ∴ <u>C is Na₂O</u> [1]
A reacts with both B and C	A is amphoteric (√) ∴ A is Al ₂ O ₃ [1]

2-3√: 1m

Equations for reaction with water:

B:
$$P_4O_{10}(s) + 6H_2O(1) \rightarrow 4H_3PO_4(aq)$$
 [1]

C:
$$Na_2O(s) + H_2O(l) \rightarrow 2NaOH(aq)$$
 [1]

(b) (i)
$$3Mq(NH_2)_2(s) \rightarrow Mq_3N_2(s) + 4NH_3(q)$$

(ii) $Mq(NH_2)_2$ is <u>less thermally stable</u> than Ba(NH₂)₂. (\checkmark)

 Mg^{2+} has the same charge but a <u>smaller</u> ionic <u>radius</u> hence a <u>higher</u> charge density than Ba^{2+} . Thus Mg^{2+} polarises the large NH_2^- anion more. (\checkmark) This <u>weakens the N-H bond</u> in the $Mg(NH_2)_2$ more (\checkmark) and thus a lower temperature is needed to decompose magnesium amide.

4√: 2m; 2-3√: 1m

(iii) Rxn 1:
$$Mg_3N_2(s) + 6H_2O(1) \rightarrow 3Mg(OH)_2(s) + 2NH_3(aq)$$

Rxn 2: $NH_3(aq) + HCl(aq) \rightarrow NH_4^+(aq) + Cl^-(aq)$

Amount of acid =
$$\frac{12.0}{1000} \times 0.50 = 0.00600$$
 mol

From rxn 2: $1 H^+ \equiv 1 NH_3$

Amount of NH_3 produced from reaction with air = 0.00600 mol

From rxn 1: 1 $Mg_3N_2 \equiv 2 NH_3$

Amount of
$$Mg_3N_2$$
 formed = $\frac{0.00600}{2}$ = 0.00300 mol [1]

Mass of Mg₃N₂ in 1.00 g sample =
$$0.00300 \times 100.9 = 0.303$$
 g

: percentage of Mg₃N₂ in 1.00 g sample =
$$\frac{0.303}{1.00} \times 100$$

= 30.3 % [1]

1 (c) (i) Precipitate formed is AgCl.

$$\begin{bmatrix} Ag^{+} \end{bmatrix} \text{ at point of mixing} = \frac{0.0100 \times 5}{30 + 5}$$
$$= 1.428 \times 10^{-3} \text{ mol dm}^{-3}$$

$$\begin{bmatrix} CI^- \end{bmatrix}$$
 at point of mixing $= \frac{\begin{bmatrix} CI^- \end{bmatrix}_{initial} \times 30}{30 + 5}$

For precipitation to take place: ionic product $(AgCl) \ge K_{sn}(AgCl)$

ionic product =
$$\left(1.428 \times 10^{-3}\right) \left(\frac{Cl^{-}}{30 + 5} \times 30\right) \ge 1.8 \times 10^{-10}$$

$$\therefore \left[Cl^{-}\right]_{\text{initial}} \ge 1.47 \times 10^{-7} \text{ mol dm}^{-3}$$
[1]

(ii) Cream ppt is <u>AgBr</u>, halide present is <u>Br</u>.

(iii)
$$\triangle G = (8.31)(298)\ln(1.8 \times 10^{-10})$$

= $-5.56 \times 10^4 \text{ J mol}^{-1}$
= $-55.6 \text{ kJ mol}^{-1}$ [1]

Using
$$\Delta G_{ppt}^{\varnothing} = \Delta H_{ppt}^{\varnothing} - T\Delta S_{ppt}^{\varnothing}$$

-5.56 × 10⁴ = $\Delta H_{ppt}^{\varnothing}$ - (298)(-410)
 $\therefore \Delta H_{ppt}^{\varnothing} = -178000 \text{ J mol}^{-1} / -178 \text{ kJ mol}^{-1}$ [1]

(iv) Since $\Delta H_{ppt}^{\varnothing} = -178 \text{ kJ mol}^{-1}$, hence $\Delta H_{soln}^{\varnothing} = +178 \text{ kJ mol}^{-1}$ [1]

Since
$$\Delta H_{soln} = -LE + \sum \Delta H_{hyd} (ions)$$

+178 = -LE + (-473) + (-378)
 $\therefore LE = -1030 \text{ kJ mol}^{-1}$ [1]

(v) This difference indicates that <u>AgCl is not purely ionic</u> / there <u>exists</u> covalent character in the ionic bond in AgCl. [1]

The <u>electronegative difference between Ag and Cl is so small</u> that complete transfer of an electron from the silver to the chlorine is not possible.

[1]

OR

 Cl^- has a <u>large anion radius</u> allowing it to be <u>readily polarised</u> by Ag^+ ions. [1]

[Total: 20]

For Examiner's Use

2 (a) (i) Indicator for first end point: cresol red

Indicator for second end point: methyl yellow [1] - for both indicators

 pK_a of indicator matches the pH change at equivalence point [1] OR

Equivalence point pH lies within working range of the indicator [1]

(ii) Since CO_3^{2-} the stronger base, it will react with acid first.

Rxn at first end point: CO_3^2 -(aq) + H⁺(aq) \rightarrow HCO₃-(aq)

amount of
$$H^+ = \frac{8.40}{1000} \times 0.200 = 0.00168$$
 mol

Since $1 CO_3^{2-} \equiv 1 H^+$

amount of CO_3^{2-} in 20.0 cm³ solution = <u>0.00168 mol</u> [1]

$$\left[Na_{2}CO_{3}\right] = 0.00168 \times \frac{1000}{20.0} \times 106 = 8.90 \text{ g dm}^{-3}$$
 [1]

Rxn at second end point: $HCO_3^-(aq) + H^+(aq) \rightarrow CO_2 + H_2O$

Vol. of acid reacting with HCO_3^- formed from CO_3^{2-}

 $= 8.40 \text{ cm}^3$

Vol. of acid reacting with HCO3 originally in solution

$$= (18.80 - 8.40) - 8.40 = 2.00 \text{ cm}^3$$

amount of acid reacting
$$= \frac{2.00}{1000} \times 0.200$$
$$= 4.00 \times 10^{-4} \text{ mol}$$
[1]

= amount of HCO₃ originally in solution

[1]

$$\therefore \left[HCO_3^- \right] \text{ originally in solution} = \frac{4.00 \times 10^{-4} \times \frac{1000}{20.0} \times 84.0}{1.68 \text{ g dm}^{-3}}$$
 [1]

OR

Vol. of acid used to react with total amount of HCO_3^-

$$= 18.80 - 8.40 = 10.40 \text{ cm}^3$$

Total amount of acid used = Total amount of HCO_3^- present = $\frac{10.40}{1000} \times 0.200$ = 0.00208 mol

At first end point, $1 CO_3^{2-} \equiv 1 HCO_3^{-}$

Amount of HCO_3^- formed from $CO_3^{2-} = 0.00168$ mol

original amount of
$$HCO_3^- = 0.00208 - 0.00168$$

= 4.00×10^{-4} mol

$$\left[HCO_{3}^{-}\right]$$
 originally in solution = $\frac{4.00 \times 10^{-4} \times \frac{1000}{20.0} \times 84.0}{1.68 \text{ g dm}^{-3}}$ [1]

2 (b) (i) It is more difficult/energy required to remove a positively charged H+ ion from anion than a neutral molecule due to greater electrostatic attraction.

OR

Doubly charged anion is more unstable than a singly charged anion.
[1]

(ii) A higher pK_{a1} value for succinic acid implies it is the weaker acid than malonic acid, indicating the <u>anion of succinic acid is less stable/anion of tartaric acid is more stable</u> (\checkmark)₁.

Any one of the following reasons:

Two <u>electron-withdrawing -OH groups</u> that helps to <u>disperse</u>
 <u>the negative charge on O⁻ in the monoanion of tartaric acid</u>
 (✓)₂, making it more stable.

There is <u>electron-donating alkyl group</u> that <u>intensifies the</u> <u>negative charge on O- in the monoanion of succinic acid</u>, $(\checkmark)_3$ making it less stable.

2. <u>Monoanion of tartaric acid</u> can form (<u>more extensive</u>) <u>intramolecular hydrogen bonding</u> forming 5- or 6-membered rings. (*)₂

Monoanion of succinic acid cannot form (have less extensive) intramolecular hydrogen bond as it forms an unstable 7-membered ring. $(\checkmark)_3$

structural formulae of mono-anions

3√: 2m; 2√: 1m

(iii) $HO_2CCH(OH)CH(OH)CO_2^- + H^+ \rightarrow HO_2CCH(OH)CH(OH)CO_2H$ [1] $HO_2CCH(OH)CH(OH)CO_2^- + OH^- \rightarrow {}^-O_2CCH(OH)CH(OH)CO_2^- + H_2O$ [1]

Accept also:

 $HO_2CCH(OH)CH(OH)CO_2^- + H_2O \ll ^-O_2CCH(OH)CH(OH)CO_2^- + H_3O^+ + HO_2CCH(OH)CH(OH)CO_2^- + H_2O \ll HO_2CCH(OH)CH(OH)CO_2H + OH^-$

2 (b) (vi) At point X: initial pH of tartaric acid (weak acid)

$$[H^{+}] = \sqrt{K_{a} \times [acid]}$$

$$= \sqrt{(10^{-2.95})(0.20)}$$

$$= 0.0150 \text{ mol dm}^{-3}$$
pH = -lg 0.0150 = 1.82 [1]

At point Y: pH of amphiprotic species ${}^{-}O_2C(CH(OH))_2(CO_2H)$

pH =
$$\frac{1}{2} (pK_{a1} + pK_{a2})$$

= $\frac{1}{2} (2.95 + 4.25) = 3.60$ [1]

At point **Z**: solution is at maximum buffering capacity when $[{}^-O_2C(CH(OH))_2(CO_2H)] = [{}^-O_2C(CH(OH))_2(CO_2^-)]$

$$pH = pK_{02} = 4.25$$

[1]

- (c) (i) D: $CH_2=CHCO_2H$ [1] E: $CH_2BrCH(OH)CO_2H$ [1]
 - (ii) Step II: <u>Br₂(aq)</u> [1] Step IV: H₂SO₄(aq)/HCl(aq), heat [1]
 - (iii) Use <u>aqueous bromine</u> to test the reaction mixture. [1]

If aqueous bromine <u>remains orange</u>, reaction is <u>complete</u>. / If <u>orange</u> <u>aqueous bromine decolourises</u>, reaction is <u>incomplete</u>. [1]

[Total: 20]

3 (a) (i) NaOH is required to generate the nucleophile CN⁻. [1]

HCN is a weak acid/ionises only partially. Thus [CN⁻] is low and reaction is slow. [1]

For Examiner's Use

(ii) Comparing experiments 1 and 2:

When [CH₃CHO] increases by 2x, rate increases by 2x \rightarrow rate \propto [CH₃CHO]

∴ order of reaction wrt CH3CHO is 1.

Comparing experiments 1 and 3:

Let rate = $k[CH_3CHO][NaOH]^{\alpha}$

$$\frac{1.15 \times 10^{-14}}{6.90 \times 10^{-14}} = \frac{k \left(1.25 \times 10^{-2}\right) \left(1.25 \times 10^{-4}\right)^{\alpha}}{k \left(3.75 \times 10^{-2}\right) \left(2.50 \times 10^{-4}\right)^{\alpha}}$$

 $\therefore a = \text{ order of reaction wrt NaOH} = \underline{1}$

[1]

[1]

3 (b) (i) The rate equation defines the slow step and shows that there is only 1 molecule of carbonyl compound and one CN⁻ involved.

Hence, the rate-determining step is Step $\underline{1}$.

(ii) The <u>bigger K_c value</u> indicates <u>position of equilibrium</u> to form the cyanohydrin compound <u>lies more to the right</u>, compound is more susceptible to nucleophilic substitution. [1]

Comparing reactions I and II:

The <u>electron donating -CH₃</u> group make the <u>carbonyl C less electron</u> <u>deficient</u>, thus <u>less susceptible to nucleophilic attack</u>. [1]

Comparing reactions I and III:

The <u>electron withdrawing/electronegative -Cl group</u> makes the <u>carbonyl C more electron deficient</u>, thus <u>more susceptible to nucleophilic attack</u>. [1]

(c) (i) The product formed:

[1]

Since the product has two C=C double bonds, total number of isomers formed $2^2 = 4$. [1]

(iii) There is <u>less steric hindrance</u> from the primary alkyl halide compared to a secondary alkyl halide. [1]

OR

There is one <u>less electron-donating alkyl group</u> in the primary alkyl halide hence the C is less δ + and is more susceptible to nucleophilic attack.

- 3 (c) (iv) N cannot expand octet/have more than 8 valence electrons
 because N does not have energetically accessible/low-lying vacant
 (3)d orbitals to accept the electrons.

 [1]
 - (d) (i) The <u>tertiary carbocation formed/one more electron-donating CH₃</u>
 <u>group attached to the C+</u> (✓) when the Br⁺ electrophile is substituted
 <u>at the 2- and 4-positions is more stable</u> (✓) as the <u>the positive</u>
 <u>charge</u> on C+ <u>is more dispersed</u> (✓), stabilising the carbocation.

3√: 2m; 2√: 1m

[Total: 20]

For

Examiner's

(ii) <u>CO₂ has lower boiling point</u>. (✓)

Both have simple covalent structure. However, more energy (\checkmark) is required to overcome the stronger permanent dipole-permanent dipole attractions between N₂O molecules (\checkmark) compared to the weaker instantaneous dipole-induced dipole attractions between CO_2 molecules. (\checkmark)

4√: 2m; 2-3√: 1m

(b) (i) Considering the spontaneity of the two reactions using the relationship $\Delta G = \Delta H - T \Delta S$

For reaction 2:
$$\Delta G = \Delta H - T\Delta S$$

-ve 0

 ΔS for reaction 2 is negligible/approximately zero since there is (no change in the number of moles of gas). As such, the reaction is enthalpy driven. Since ΔH is negative, ΔG is always negative. Thus, lowering temperature will have no impact on ΔG for reaction 2. [1]

For reaction 1:
$$\Delta G = \Delta H - T\Delta S$$

+ve +ve

 ΔS for reaction 1 is positive since there is (an increase in the number of moles of gas). However, since ΔH is positive, the reaction is only spontaneous at high temperatures. [1]

As such, at lower temperatures, <u>reaction 2 is favoured</u>. [1]

(ii)
$$\frac{\frac{3}{2}C(s) + \frac{3}{2}CO_{2}(g)}{} \xrightarrow{\frac{3}{2}\Delta H_{r}} 3CO(g) + Fe_{2}O_{3}(s) + 234 + 234$$

$$2Fe(s) + \frac{3}{2}CO_{2}(g) + \frac{3}{2}CO_{2}(g)$$

$$\therefore \Delta H_r = \frac{2}{3} \times \left[(+234) - (-24.8) \right]$$
 [1] - or from balanced cycle
= $\frac{+173 \text{ kJ mol}^{-1}}{}$ [1]

(c) (i) amount of
$$H_2 = \frac{38.0}{2} = 19.0 \text{ mol}$$

amount of $CO = \frac{462}{28} = 16.5 \text{ mol}$
amount of $CH_3OH = \frac{7200}{32} = 225 \text{ mol}$
 \therefore Total amount of gas = 19.0 + 16.5 + 225 = 260.5 mol [1]

mole fraction of
$$H_2 = \frac{19.0}{260.5} = 0.0729$$

mole fraction of $CO = \frac{16.5}{260.5} = 0.0633$
mole fraction of $CH_3OH = \frac{225}{260.5} = 0.864$

(ii)
$$K_{p} = \frac{P_{cH_{3}OH}}{(P_{co})(P_{H_{2}})^{2}}$$
 [1]
$$= \frac{0.864 \times 7500}{(0.0633 \times 7500)(0.0729 \times 7500)^{2}}$$

$$= 4.57 \times 10^{-11} \text{ kPa}^{-2}$$
 [1] - units

4 (d)

	Type of reaction	Deductions
J has MF C ₈ H ₉ N		C:H ≈ 1:1, benzene ring present in J (✓) - mark under phenylamine.
J is soluble in dilute HCl	<u>Acid-base</u> (√)	J is an amine (√).
J reacted with steam in the presence of catalyst at high temp. and pressure	Electrophilic addition (√a)	J contains an alkene (√b). L and M are alcohols (√).
J reacts with 4 mol of Br ₂ (aq)	Electrophilic addition (✓a) Electrophilic substitution (✓)	J contains an alkene (√b). J is phenylamine (√). 2,4,6-position relative to amine group is unsubstituted
L is optically active		L contains a chiral C (✓).
$oldsymbol{L}$ reacts with alkaline $I_2(aq)$	Triiodomethane /Iodoform test / oxidation (✓)	L contains —CH(OH)CH₃ (✓)
J, L and M reacts with acidified KMnO ₄ to form Q C ₇ H ₈ O ₂ N	oxidation (√)	Q contains —CO₂H group / benzoic acid (✓)
Q C7H8O2N (crystalline solid)	Intra-molecular acid-base (✓)	Q is a ionic salt (✓)

15-12 √: 5m; 10-11 √: 4m; 7-9 √; 3m; 4-6 √: 2m; 2-3 √: 1m

[Total: 20]

5 (a) (i)

Fe(s) | Salt bridge | 1 bar, 25 °C | OH⁻(aq)

For Examiner's Use

[1] for <u>each</u> correctly drawn half-cell *mark for temp only once [1] for salt bridge and voltmeter [1] for electron flow

Pt(s)

Minus 1m if "1 mol dm-3 H2O" is stated

1 mol dm⁻³, 25 °C

(ii)
$$E_{cell}^{\varnothing} = +0.40 - (-0.44) = +0.84 \text{ V}$$

1 mol dm⁻³, 25-°€

(iii)
$$2Fe(s) + O_2(q) + 2H_2O(l) \rightarrow 2Fe^{2+}(aq) + 4OH^{-}(aq)$$

Do not accept if "Fe(OH)2" is used to balance eqn

(iv)
$$\Delta G = -nFE = \frac{-(4)(96500)(+0.84)}{= -324 \text{ kJ mol}^{-1}} = -324 \text{ kJ mol}^{-1}$$
 [1]

Since $\Delta G < 0$, reaction is <u>energetically feasible</u>. [1]

(V) NaOH reacts with Fe²⁺ to form Fe(OH)₂ that <u>reduces [Fe²⁺]</u>. (\checkmark)

This causes the <u>position of equilibrium for $Fe^{2+} + 2e \ll Fe$ to shift left</u> (\checkmark), <u>E(Fe²⁺/Fe)</u> to be <u>less positive</u> and thus <u>E_{cell}</u> to be <u>more positive</u>. (\checkmark)

This will result in a <u>more negative ΔG value</u>, thus <u>reaction</u> becomes more feasible. (\checkmark)

4√: 2m: 2-3√: 1m

(b)

	Type of reaction	Deductions
G boiled with NaOH gives H and J	Alkaline hydrolysis (🗸) Nucleophilic substitution (🗸)	G is an ester (√) G is an alkyl halide (√)
H C7H8O2 forms violet colouration with neutral ferric chloride		C:H ≈ 1:1, benzene ring present in H (✓) - mark under phenol. H is a phenol (✓)
1 mole of H reacts with 2 moles of Br ₂ to form a symmetrical product.	Electrophilic substitution (1)	H is 1,4-disubstituted (✓)
J + NaHCO3 forms gas	Acid-carbonate reaction	J is a carboxylic acid (✓)
J + aq. alkaline I ₂ gives yellow ppt and K	<u>Iodoform test</u> (√)	J contains −CH(OH)CH ₃ or −COCH ₃ group (✓)
J heated with H2(g) and Ni forms L	Reduction (✓)	J is a ketone (✓) L is an alcohol (✓)
Heat L in acid catalyst forms M	condensation (√)	M is an ester (√)

14-17 √: 5m; 10- 13 √: 4m; 7-9 √; 3m; 4-6 √: 2m; 2-3 √: 1m

[Total: 20]