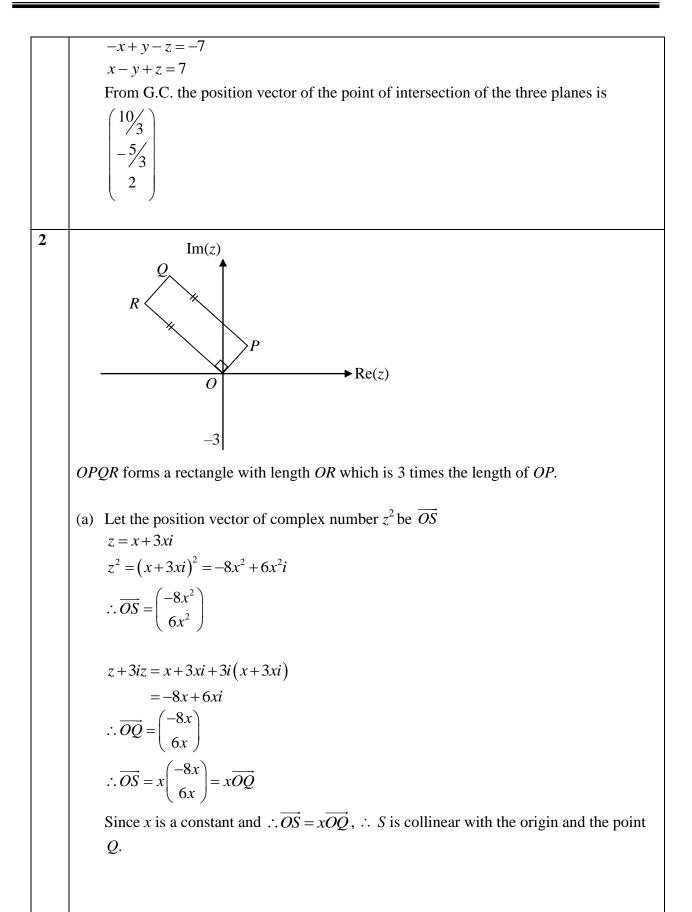
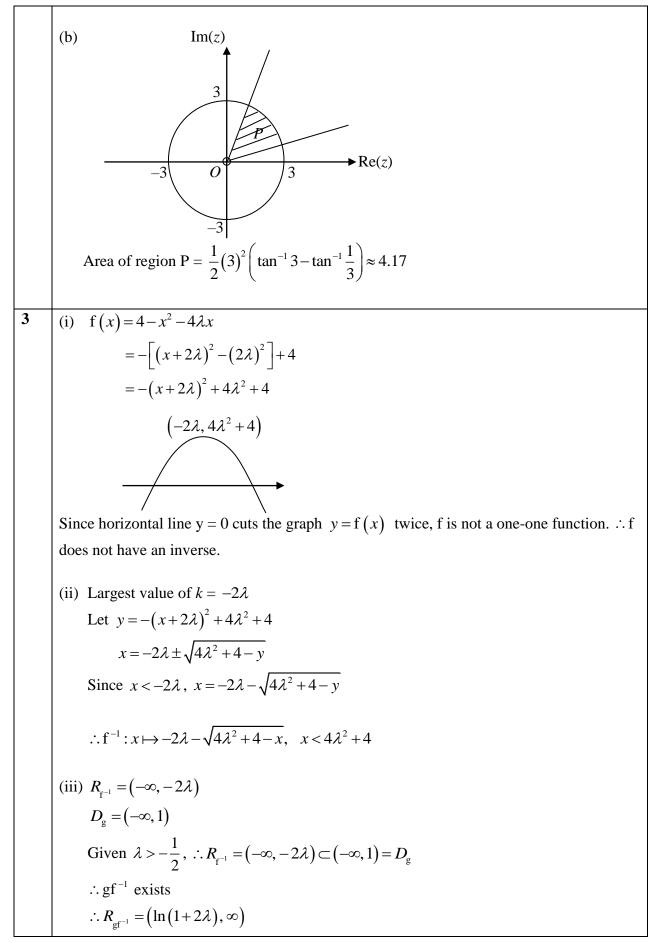
Qn	Solution		
1	(i) Let θ be the acute angle between the 2 planes.		
	$\cos\theta = \frac{\begin{vmatrix} 1\\2\\1 \end{vmatrix} \cdot \begin{vmatrix} 2\\1\\-1 \end{vmatrix}}{\sqrt{6}\sqrt{6}} = \frac{3}{6}$		
	$\theta = \frac{\pi}{3}$		
	(ii) $\overrightarrow{OB} = \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ for some $\lambda \in \mathbf{R}$		
	$= \begin{pmatrix} 4+\lambda\\-1+2\lambda\\2+\lambda \end{pmatrix}$		
	Since B is on π_1 ,		
	$(4+\lambda)+2(-1+2\lambda)+(2+\lambda)=2$		
	$6\lambda = -2$		
	$\lambda = -\frac{1}{3}$		
	$\overline{OB} = \begin{pmatrix} \frac{11}{3} \\ -\frac{5}{3} \\ \frac{5}{3} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 11 \\ -5 \\ 5 \end{pmatrix}$		
	Thus the coordinates of <i>B</i> is $\left(\frac{11}{3}, -\frac{5}{3}, \frac{5}{3}\right)$.		
	(iii) Normal of $\pi_3 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ -3 \end{pmatrix} = 3 \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$		
	Cartesian equation of π_3 :		
	$\mathbf{r} \cdot \begin{pmatrix} -1\\1\\-1 \end{pmatrix} = \begin{pmatrix} 4\\-1\\2 \end{pmatrix} \cdot \begin{pmatrix} -1\\1\\-1 \end{pmatrix}$		





4 (i)
$$u_2 = \frac{5}{3^2}, u_3 = \frac{7}{3^3}, u_4 = \frac{9}{3^4}$$

(ii) $u_n = \frac{2n+1}{3^n}$
(iii) Let P_n be the statement " $u_n = \frac{2n+1}{3^n}, n \in \Box^+$ "
When $n = 1$,
LHS = $u_1 = 1$, RHS = $\frac{2+1}{3} = 1$
Since LHS = RHS, P_1 is true.
Assume P_k is true for some values of $k \in \Box^+$
ie $u_k = \frac{2k+1}{3^k}$
When $n = k + 1$
Want to show: $u_{k+1} = \frac{2k+3}{3^{k+1}}$
LHS = u_{k+1}
 $= \frac{1}{3^{k+1}}(3^k(\frac{2k+1}{3^k})+2)$
 $= \frac{2k+3}{3^{k+1}}$
= RHS
 $\therefore P_{k+1}$ is true
By Mathematical Induction, P_n is true for all $n \in \Box^+$.
5 (a) $\frac{dx}{dt} \alpha \sqrt{x}$
 $\frac{dx}{dt} = k\sqrt{x}, k < 0$
 $\int x^{\frac{1}{2}} dx = \int k dt$
 $2x^{\frac{1}{2}} = kt + c$
When $t = 0, x = 200 \Leftrightarrow C = 2\sqrt{200}$
When $x = 100, \frac{dx}{dt} = -1 \Leftrightarrow k = \frac{-1}{10}$
Hence, $2x^{\frac{1}{2}} = -\frac{1}{10}t + 2\sqrt{200}$ (shown)

When x = 100, $2\sqrt{100} = -\frac{1}{10}t + 2\sqrt{200}$ $\Leftrightarrow t = 82.84$ The container has been leaking for 83 min. (b) v = x - y $\Rightarrow \frac{dv}{dx} = 1 - \frac{dy}{dx}$ $\frac{\mathrm{d}y}{\mathrm{d}x} + \left(1 + (x - y)^2\right)\cos x = 1$ $1 - \frac{\mathrm{d}v}{\mathrm{d}x} + \left(1 + v^2\right)\cos x = 1$ $-\frac{\mathrm{d}v}{\mathrm{d}r} = -\left(1+v^2\right)\cos x$ $\int \frac{1}{1+v^2} \, \mathrm{d}v = \int \cos x \, \mathrm{d}x$ $\tan^{-1} v = \sin x + C$ $\tan^{-1}(x-y) = \sin x + C$ $(x-y) = \tan(\sin x + C)$ $y = x - \tan(\sin x + C)$ 6 (i) Simple random sample might not be representative if no manager is chosen. To obtain a sample of 40 staff members, we draw *random* samples from each (ii) category with sample size in the same proportion as the size of each category in the company. Managers Technicians Factory workers $\frac{60}{500} \times 40$ $\frac{300}{500} \times 40$ $\frac{140}{500} \times 40$ Sample size ₌24 =4.8=11.2≈5 ≈11 Advantage: Each staff category is represented proportionately. 7 Let μ be the population mean decrease in cholesterol level (i) $H_0: \mu = 25$ $H_1: \mu > 25$ (one-tailed test) Under H_0 , (since σ^2 is unknown and *n* is small,) the test statistic is $T = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t(n-1)$

		1 25 1	451645 = 10 F - 2F			
		•	$4.51645, n = 12, \bar{t} = 35$			
		i.e. $T \sim t(11)$	0.05			
		Level of significant				
	From G.C., the p -value = 0.0180475					
		Conclusion:				
		-	$180475 < 0.05$ (significance level), we reject H_0 and conclude that			
		at the 5% level, there is <u>significant evidence</u> to conclude the mean decrease in				
		LDL level is more than 25.				
	(ii)) The decrease in LDL level in the underlying population follows a normal distribution.				
	(:::)	$II \cdot u = 25$				
	(111)	i) $H_0: \mu = 25$				
		$H_1: \mu > 25$ (one-tailed test)				
		Under H ₀ , the test statistic is $Z = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim N(0, 1)$ approximately (by CLT)				
		where $\mu = 25, n = 100, s = 14.51645$				
		Level of significant Critical Region (or	ce: $5\% = 0.05$ Rejection Region): Z > 1.64485			
		Coffee company not promoting the new coffee product \Rightarrow H ₀ is not rejected ,				
		$\Rightarrow \frac{\overline{x} - 25}{14.51645 / \sqrt{100}}$	< 1.64485			
		$\Rightarrow \bar{x} < 27.3877$				
		_> X < 21.3011				
8 a	(\cdot)	P(Score is 4) = $\frac{3C2}{7C3}$	3			
oa	(1)	$P(\text{Score is 4}) = \frac{1}{7C3}$	= 35			
	(ii)	P(Score is 6 given that one of them is 2)				
		$=\frac{P(Score is 6 and one of them is 2)}{P(one of the number is 2)}$				
		4C1				
		6C2				
		$=\frac{1}{15}$				
b	(i)	Using M1 method:				
		N mber of	Number of integers			
		digits				
		1	3C1 = 3			
		2	3P2 = 6			
		3	3P3 = 6			
		Using M2 Method:	2 2			
	Number of integers = $4 + 4^2 + 4^3 = 84$					
	Hence, total number of integers in set A					
		=3+6+6+84				
		= 99				

```
(ii) P( sum of 2 integers is even)
             = P(both integer is even) + P(both integer is odd)
             =\frac{15}{99} \times \frac{14}{98} + \frac{84}{99} \times \frac{83}{98}=\frac{57}{77}
       P(Player wins a prize in a game) = p^4
9
       (i) Let X be r.v. "number of winners within the first ten games".
                           i.e. X \sim B(10, p^4)
             P(at least one winner within the first ten games) \geq 0.9
             P(X \ge 1) \ge 0.9
              1 - P(X = 0) \ge 0.9
             P(X=0) \le 0.1
             (1-p^4)^{10} \le 0.1
              1 - p^4 \le 0.1^{\frac{1}{10}}
              p^4 \ge 0.205672
              0.673 \le p \le 1 (correct to 3 s.f)
       (ii) Let Y be the r.v "no. of prizes won out of 100 games".
              Y \square B(100, (0.7)^4)
             E(Y) = 100(0.7)^4 = 24.01
             Var(Y) = 100(0.7)^4 (1 - (0.7)^4) = 18.245199
             Let \overline{Y} = \frac{Y_1 + Y_2 + \dots + Y_{60}}{60}
             Since n = 60 is large, by Central Limit Theorem,
              \overline{Y} \sim N\left(24.01, \frac{18.245199}{60}\right) approximately.
              \therefore P(\overline{Y} \le 24) \approx 0.493
       Alternative solution
             Let Y be the r.v "no. of prizes won out of 100 games".
              Y \square B(100, (0.7)^4)
             np=100(0.7)^4 = 24.01 > 5
             nq = 100(1 - (0.7)^4) = 75.99 > 5
              Y \sim N(24.01, 18.24511) approximately
             Let \overline{Y} = \frac{Y_1 + Y_2 + \dots + Y_{60}}{60}
             \overline{Y} \sim N\left(24.01, \frac{18.245199}{60}\right) approximately.
```

		regression line of y on ln x is closer to 1, $y = a+b\ln x$ is a better model.
	(iv)	From GC, $y = -163.23278 + 53.7472975 \ln x$ When $y=55$, depth, $x = 58.0$ mm (to 3 s.f)
		As $y = 55$ is within the range of the data set of y and $r = 0.905$ is close to 1, the estimate is reliable.
12	(i) (ii)	Let X be the r.v. "the volume (in ml) of coke dispensed into a cup". $X \sim N(\mu, 20^2)$ P(X>500) < 0.001 $P(Z>\frac{500 - \mu}{20}) < 0.001$ $\frac{500 - \mu}{20} > 3.09023231$ $\mu < 438.19535$ $\Rightarrow \max \mu = 438.19ml$ Let C be the r.v. "volume (ml) of a cup of coke" $C \sim N(475, 20^2)$ P(C>500) = 0.10565 Let W be the number of cups of coke that will overflow out of 120 cups
		W~B(120, 0.10565) Since $n = 120 > 30$ and $np = 12.675 > 5$ and $nq = 107.332 > 5$ W~N(12.675, 11.33857) approximately P(W ≥ 10) $\stackrel{cc}{\rightarrow}$ P(W > 9.5) = 0.827
	(iii)	Let <i>L</i> be the r.v. "volume (in ml) of a cup of lemon tea". $L \sim N(450, 30^2)$ $P(C_1 + C_2 + C_3 + C_4 > 2(L_1 + L_2))$ $= P(C_1 + C_2 + C_3 + C_4 - 2(L_1 + L_2) > 0)$ = P(M > 0) $M \sim N(4(475) - 2(2)(450), 4(20^2) + 4(2)(30^2))$ i.e. $M \sim N(100, 8800)$ $P(M > 0) \approx 0.857$