6093 Biology Yearly TYS 2018

No	Paper 1	Marks	Remarks
1	С	1	
2	A	1	
3	В	1	
4	В	1	
5	С	1	
6	D	1	
7	С	1	
8	A	1	
9	В	1	
10	A	1	
11	С	1	
12	В	1	
13	С	1	
14	D	1	
15	A	1	
16	В	1	
17	С	1	
18	С	1	
19	В	1	
20	D	1	
21	В	1	
22	D	1	
23	A	1	
24	D	1	
25	С	1	
26	С	1	
27	D	1	
28	В	1	
29	В	1	
30	A	1	
31	C	1	
32	D	1	
33	A C	1	
34	С	1	
35	D	1	
36	A	1	
37	C	1	
38	В	1	
39	D	1	
40	D	1	
	Total	40	

	Paper 2		
	Section A	Marks	Remarks
1ai	chromatid	1	
1aii	stage 3: metaphase	1	
	stage 4: anaphase	1	
1bi	2	1	
1bii	plant 1: AA	1	
	plant 3: aa		
	Total	5	
2ai	regulation of blood glucose concentration/ deamination of excess amino acids into ammonia and then urea/ breakdown of haemoglobin and stores iron released/ detoxification of alcohol by alcohol dehydrogenase into acetaldehyde/	3	
	production of bile used for emulsification of fats		
2aii	C	1	
2aiii	name: bile; function: emulsify fats into smaller fat droplets to <u>increase</u> <u>surface area to volume ratio</u> for faster digestion of fats by <u>lipase</u> ;	1 1	
2bi	40 °C	1	
2bii	rennin has <u>denatured</u> at high temperatures of 60 °C beyond optimum temperature + active site is <u>altered</u> + substrate is <u>unable to bind</u> to enzyme to form e <u>nzyme-</u> <u>substrate complex</u> ;	1	
2c	solid lumps <u>remains</u> in the stomach longer compared to liquid milk;	1	
	allows <u>complete digestion</u> and <u>greater absorption</u> of nutrients;	1	
	Total	10	

3ai	3 minute	1	
3aii	as temperature <u>increases</u> from 15 °C to 21 °C, clotting time <u>decreases rapidly</u> from 24 min (longest time taken) to 10 min;	1	R: no quotation of data
	as temperature <u>increases further</u> to 35 °C, clotting time <u>continue to</u> <u>decreases gradually</u> to 2.5 min + lowest time taken for clotting/	1	
	as temperature <u>increases</u> from 15 °C to 35 °C, clotting time <u>decreases</u> from 24 min to 2.5 min;		
	rate of clotting increases when temperature increases;		
3b	prevents foreign particles from entering the bloodstream; prevent excessive loss of blood;	1 1	
	Total	5	

10	Cumple of alwardi are righly appriled with blood assiltation in	2	otruoturo
4a	S: walls of alveoli are richly supplied with <u>blood capillaries</u> +	3	structure + function
	F: <u>continuous flow</u> of blood maintains a <u>steep concentration</u>		+ function
	gradient for faster diffusion of gases;		
	S: thin film of moisture covers the inner surface of the		
	alveolus +		
	F: <u>dissolve</u> gases for faster diffusion;		
	S: walls of alveoli are <u>one-cell thick</u> +		
	F: provides <u>short diffusion distance</u> for faster diffusion of gases;		
	S: numerous alveoli in the lungs +		
	F: provide large surface area to volume ratio to increase rate		
	of diffusion of gases;		
4b	lower levels of carbonic anhydrase to catalyse the reaction	1	R: no
	between carbon dioxide and water in RBCs + forming lower		relating to
	amounts of <u>carbonic acid;</u>		context
	decrease amount of carbon dioxide converted to	1	
	hydrogencarbonate ions for transport in the blood plasma;		
	lower rate of carbon dioxide being transported to the lungs	1	
	for excretion + leads to carbon dioxide poisoning/ excess		
	carbon dioxide in the RBC/ slower gaseous exchange;		
4ci	pressure <u>decreases</u> from 0 a.u. to -1 a.u. in the first second	1	1 st second
	+ reaches the lowest point at -1 a.u.;		
	pressure <u>increase</u> from -1 a.u. to 0 a.u. in the next second;		next
		1	second
4cii	muscles of diaphragm contract + diaphragm flattens +	1	diaphragm
	external intercostal muscles contract while internal		+ ICM
	intercostal muscles <u>relax;</u>		
	moving the ribs <u>upwards</u> and <u>outwards</u> + sternum moves up		ribs +
	and forward causing lungs to expand + increasing thoracic		sternum + volume
	<u>volume;</u>	1	volume
	lowering air pressure in the lungs/		pressure +
	atmospheric pressure is <u>higher</u> than pressure in the lungs +		air enters
	forces atmospheric air into lungs;	1	
	Total	11	

5ai	173.5	1	R: unit written
5aii	$\frac{52.0 - 20.8}{52.0} \times 100\% = 60\%$		
	$\frac{180.0 - 175.5}{180.0} \times 100\% = 2.5\%$	1	
5aiii	urea	1	
5b	structure A is the glomerulus + Stucture B is the venule;	1	Identify both structures
	<u>ultrafiltration</u> + <u>high hydrostatic blood pressure</u> in A forces small molecules i.e. glucose, amino acids, mineral salts and nitrogenous waste products to pass through the <u>partially</u> <u>permeable</u> basement membrane into the Bowman's capsule + blood cells, platelets and large molecules i.e. proteins and fats are <u>retained</u> in the glomerular capillaries;	1	Function of A
	<u>blood capillaries</u> surrounding the <u>nephron</u> unites to form B + join to form a branch of <u>renal vein</u> + carries deoxygenated blood with <u>lower concentration</u> of mineral salts and nitrogenous waste products and <u>more carbon dioixide</u> than blood entering the kidneys;	1	Function of B
	Total	6	
6a	A is main vein/ vein/ mid-rib + contains <u>xylem and phloem</u> situated close to mesophyll cells; xylem transports <u>water and dissolved mineral salts</u> from	1	Identify structure and tissues
	roots to mesophyll cells by <u>transpiration pull</u> + phloem transports <u>sucrose</u> from the leaves to other parts of the plant by <u>active transport</u> ;		Functions of tissues
6bi	sucrose	1	
6bii	phloem <u>tissue</u>	1	
6biii	$\frac{65cm}{2.5h} = 26 \ cm/h$	1	
	= 20 cm/n	1	
	Total	6	

7a	aerobic respiration (P) in animal and plant cells + combustion (S) or burning of fossil fuels <u>produces carbon</u> <u>dioxide</u> + returning carbon dioxide to the environment;	1	Return CO ₂
	photosynthesis (Q) in plants <u>absorbs carbon dioxide</u> to be used to synthesise glucose + removing carbon dioxide from the environment;	1	Remove CO ₂
	nutrient cycling + constant removal of carbon dioxide from environment and returning of carbon dioxide into the environment + ensures that concentration of carbon dioxide in the environment is <u>relatively constant</u> ;	1	Nutrient cycling
7b	bacteria and fungi are <u>decomposers</u> that <u>break down</u> dead organisms/ dead organic matter;	1	
	decomposition and respiration of bacteria and fungi releases carbon dioxide into the environment;	1	
	dead decomposed bodies of organism buried in the Earth for millions of years will <u>produce fossil fuels</u> such as coal, natural gas and oil + used in <u>combustion releasing carbon</u> <u>dioxide</u> to the environment;	1	
	Total	6	

Section B		
8ai Graph of Sensitivity of Retina against Wavelength of Light 120 100	4	
Best fit line + smooth curve; Correct orientation; Correct axes + equal intervals;		
8aii $100 - 15 = 85 a.u.$	1	R: wrong units
8aiii sensitivity <u>increases</u> from 5 a.u. to 100 a.u. as wavelength <u>increases</u> from 420 nm to 500 nm + <u>highest sensitivity</u> of 100 a.u. when wavelength is at 500 nm;		
as wavelength increases further from 500 nm to 600 nm, sensitivity decreases from 100 a.u. to 5 a.u. + lowest sensitivity of 5 a.u. at 420 nm and 600 nm;		
8aiv 72 a.u.	1	
8b <u>photoreceptor</u> in <u>retina</u> stimulated by bright light + nerve impulses produced;	1	
nerve impulses travel along <u>sensory neurone</u> in <u>optic nerve</u> to <u>relay neuron</u> in the brain + to the <u>motor neurone</u> and reaches effector (<u>muscles of the iris</u>);		
<u>circular</u> muscles of the iris <u>contract</u> + <u>radial</u> muscles of the iris <u>relax</u> + <u>pupil constricts</u> + reducing light entering the eye;		
Total	11	

9a	Diffusion is the <u>net</u> movement of molecules down <u>concentration gradient</u> but osmosis is the <u>net</u> movement of water molecules down <u>water potential gradient</u> ;	1	D & O
	Diffusion and osmosis does not require <u>energy</u> but active transport requires energy;	1	DO & AT
	Diffusion and osmosis are movements <u>down a</u> concentration and water potential gradient respectively but	1	DO & AT
	active transport is a movement <u>against a concentration</u> gradient;		R: mere definition
9bi	Water <u>molecules</u> enter cell B <u>down water potential</u> <u>gradient</u> through the partially permeable cell membrane + vacuole <u>expands and pushes against the cell wall</u> + cell B becomes turgid;	1	Describe + explain
	Socomos <u>rangia</u> ,	1	
	Water <u>molecules</u> leave cell C <u>down water potential</u>		
	<u>gradient</u> through the partially permeable cell membrane + vacuole <u>shrinks</u> + cytoplasm shrinks away from the cell wall + cell C becomes <u>flaccid/ plasmolysed</u> ;		
9bii	Cell B	1	
9biii	lons are absorbed into RHC by <u>active transport</u> <u>against</u> <u>concentration gradient</u> ;	1	
	RHC has a high ion concentration + creating a <u>lower water</u> <u>potential</u> than the water potential in the soil solution;	1	
	Maintaining a <u>steep water potential gradient</u> + increase rate of water absorption into RHC by <u>osmosis</u> ;	1	Importance
	Total	9	

E10a Photosynthesis is the process in which light energy absorbed by chlorophyll is transformed into chemical energy + chemical energy is used to synthesise carbohydrates from water and carbon dioxide;	1	Definition
chlorophyll Carbon dioxide + water → glucose + oxygen light	1	Equation
/ water and carbon dioxide are raw materials + oxygen released during the process in the presence of chlorophyll and light;		
in light-dependent stage, <u>chlorophyll</u> absorbs/traps <u>light</u> <u>energy</u> + convert into <u>chemical energy</u> ;	1	LDS
light energy is used to <u>split water molecules</u> into oxygen and hydrogen atoms + <u>photolysis</u> of water;	1	LDS
In light-independent stage, hydrogen produced in photolysis is used to reduce carbon dioxide;	1	LIS
carbon dioxide gains hydrogen to form glucose;	1	LIS
E10b Photosynthesis involved <u>enzyme-catalysed</u> reactions + affected by temperature;	1	Factor
<u>Rate of enzyme reaction</u> is highest at optimum temperature + <u>rate of p/s</u> is the highest at optimum temperature;	1	Relationship
rate of p/s is higher on a warm day than a cold day + enzymes are <u>inactive at low temperatures</u> below optimum temperature;	1	Explain – low temp
rate of p/s increases as temperature increases towards optimum temperature + enzymes <u>gain energy</u> + <u>increasing collisions</u> between enzymes and substrates/ increasing the rate of formation of <u>enzyme-substrate</u> <u>complex</u> ;	1	Explain – optimum temp
Total	10	

th	crosome of the sperm releases an enzyme to disperse the follicle cells and break down part of the egg thembrane;	1	Breakdown of egg membrane
<u>nu</u>	nly one sperm nucleus enters the egg + fusion of the ucleus of a sperm with the nucleus of egg to form a ygote;	1	Fertilisation
OV	ilia lining the inner surface of oviduct <u>sweep</u> zygote along viduct + <u>peristaltic movements</u> in the wall of oviduct also elp move the zygote to the uterus;	1	Zygote moves to uterus
-	ygote <u>divides by mitosis</u> to form <u>embryo</u> + implantation akes place about <u>7 days after fertilisation</u> ;	1	implantation
cc tis	<u>illi</u> begin to grow from embryo into uterine lining + ontain <u>blood capillaries</u> forming <u>placenta</u> + embryonic ssue and uterine lining + <u>umbilical cord</u> attached the mbryo to placenta;	1	Formation of placenta
	mniotic sac encloses the embryo in amniotic cavity ontaining amniotic fluid;	1	Amniotic sac
gli	llows <u>oxygen and dissolved food substances</u> eg. lucose, amino acids and mineral salts, to diffuse from ne mother's blood to the fetal blood;	1	
ca	llows <u>metabolic waste/ excretory products</u> eg. urea, arbon dioxide, to diffuse from fetal blood into the nother's blood;	1	
fe	llows <u>antibodies</u> to diffuse from mother's blood to the etal blood + protecting the foetus against certain iseases;	1	
	roduces <u>progesterone</u> which maintains the thickness nd health of uterine lining during pregnancy;	1	
	Total	10	