VICTORIA JUNIOR COLLEGE 2023 JC2 PRELIMINARY EXAMINATION H2 CHEMISTRY PAPER 1 ANSWERS

-											
1	D	6	D	11	С	16	В	21	D	26	В
2	С	7	Α	12	D	17	С	22	Α	27	В
3	В	8	D	13	В	18	D	23	С	28	С
4	C	9	D	14	В	19	D	24	Α	29	Α
5	Α	10	В	15	С	20	С	25	В	30	Α

1 D

	No of	No of e⁻	No of
	protons		neutrons
A: Wrong	13	13	27 – 13
For ${}^{27}_{13}Al$			= 14
B: Wrong	17	17 + 1	35 – 17
For ³⁵ ₁₇ C <i>l</i> ⁻		= 18	= 18
C: Wrong	16	16 + 2	32 – 16
For ³² ₁₆ S ^{2–}		= 18	= 16
D: Correct	19	19 – 1	39 – 19
For ³⁹ / ₁₀ K ⁺		= 18	= 20

2 C

Since central C atom is sp hybridised and there are no unpaired electrons, C_2O molecule has the following structure:

:c==c==o:

Hence, C₂O has 3 lone pairs of electrons.

3 B (1 and 2 only)

Option 1: Correct

It shows the structure of diamond which has a giant molecular structure.

Option 2: Correct

It shows the structure of graphite which has a layered giant molecular structure.

Option 3: Wrong

Sodium chloride has a giant ionic structure.

Option 4: Wrong

lodine has a simple molecule structure. The molecules are held by weak intermolecular forces of attraction. It has a solid lattice structure.

4 C

PV = nRT $PV = (m/M_r)RT$

$$M_{\rm r} = {\rm mRT/(PV)}$$

Given the same mass of gases in the identical flasks of same volume, hence, m, V and R are constant, $M_{\rm r} \propto {\rm T/P}$

For gas E	For gas F	For gas G
$M_{ m r} \propto t/ m p$	<i>M</i> _r ∝ t/2p	$M_{ m r} \propto 2t/ m p$

Hence, $M_r(\mathbf{G}) > M_r(\mathbf{E}) > M_r(\mathbf{F})$

5 A

Option A: Correct

Real gases behave less ideally at high pressure. At high pressure, real gases behave less ideally as the gas particles are close to each other and size of the particle is not negligible.

Option B: Wrong

Real gases behave more ideally at high temperature. Intermolecular forces of attraction is negligible at high temperature since gas particles have sufficient kinetic energy to overcome it.

Option C: Correct

The presence of a catalyst increases the rates of both the forward and backward reactions. It does not have any effect on the ideal behaviour of gas.

Option D: Wrong

D

Strong covalent bonds between the nitrogen atoms does not explain if the gas is behaving ideally. We should consider the intermolecular attractions between the molecules instead.

6

For element X: Chloride and oxide dissolve to give strong acidic solution \Rightarrow P or S For element Y: Low conductivity at room temperature \Rightarrow Si Only 1 chloride with formula SiC $l_4 \Rightarrow$ Si Chloride dissolves giving acid solution \Rightarrow Si For element Z: Chloride and oxide have high m.p. \Rightarrow Na or Mg Oxide reacts readily in water \Rightarrow Na Chloride dissolves giving neutral solution \Rightarrow Na

7

Α

Down Group 2, charge density of cation ($\propto q^+/r^+$) decreases, causing the polarising power of cation to decrease. As a result, there is less distortion (or polarisation) of the anionic charge cloud and so the iodate becomes more stable to heat down the group. This means that iodate is decomposed at a higher temperature.

With the mass of $Q(IO_3)_2$ being unchanged with time upon heating, that means $Q(IO_3)_2$ is the most stable to heat. While $P(IO_3)_2$ is decomposed at a faster rate than $R(IO_3)_2$, meaning that $P(IO_3)_2$ is the least stable to heat.

Hence, order of the Group 2 elements: P, R, Q

Option A: Correct

Down the group, nuclear charge increases. However, the distance between the nucleus and the valence electrons increases due to an increase in number of electron shells. This results in weaker attraction between the nucleus and the valence electrons, less energy is required to remove the valence electron and first ionisation energy (IE) decreases down the group.

Hence, order of first IE of Group 2 elements: P, R, Q, with P having the most endothermic first IE.

Option B: Wrong

Down the group, with the weaker attraction between the nucleus and the valence electrons, valence electrons are more readily lost and hence reducing strength increases down the group.

Hence, order of reducing power (reactivity) of Group 2 elements: P, R, Q.

Q being the most reactive among all, reacts the most readily with water to give hydrogen gas.

Option C: Wrong

Melting point of an ionic solid depends on the strength of ionic bond, which is measured by lattice energy as follows:

|Lattice Energy| $\alpha \left| \frac{q_+ \times q_-}{r_+ + r_-} \right|$

Since size of Group 2 cations increases down the group, with P²⁺ having the smallest cationic size, $P(IO_3)_2$ has the most endothermic lattice energy and highest melting point.

Option D: Wrong

All Group 2 oxides are basic, hence they will react with acids to form salts.

8

D **Option A: Wrong**

Astatine has more electron shells than bromine. The orbital overlap between hydrogen and astatine atoms will be less effective than the orbital overlap between hydrogen and bromine atoms. Therefore, the bond strength of H-At will be weaker than H-Br implying a lower decomposition temperature.

Option B: Wrong

Going down Group 17, the oxidising power of halogen decreases. As such, At₂ will not be able to oxidise I⁻ to I₂, which is a brown solution.

Option C: Wrong

Going down Group 17, the solubility product of silver halides decreases. Since the position of astatine is below iodine in the periodic table, when NH₃(aq) is added, the ionic product of silver astatide will still exceed its solubility product, making silver astatide insoluble in NH₃(aq).

Option D: Correct

Going down Group 17, the melting point increases due to the stronger instantaneous dipole-induced dipole interactions between the non-polar halogen molecules. Since At₂ has a higher melting point than I₂ which exists as solid at room temperature, At₂ should exist as solid as well.

9 D

Oxidation half equation: $Tl^+ \rightarrow Tl^{3+} + 2e ---(1)$ Reduction half equation: $6H^+ + VO_3^- + 3e \rightarrow V^{2+} + 3H_2O ----(2)$ Hence, overall redox equation: $(1) \times 3 + (2) \times 2$ gives $3Tl^{+} + 12H^{+} + 2VO_{3}^{-} \rightarrow 3Tl^{3+} + 2V^{2+} + 6H_{2}O_{3}^{-}$

Since only VO3- is present at the end of the reaction, Tl^+ is the limiting reagent.

At the end of the reaction, let the amount of VO3- $(aq) = amount of V^{2+}(aq) = a$

	3T <i>l</i> + +	2VO ₃ - + .	$\dots \rightarrow i$	3T <i>l</i> ³⁺ +	- 2V ²⁺ +
I / mol	3a/2	2a			0
C / mol	-3a/2	–а			+a
E / mol	0	а			а

Hence, at the start of the reaction,

amount of Tl+ : amount of VO3-

= 3a/2 : 2a

= 3:4

3 mol of Tl⁺ and 4 mol of VO₃⁻ are required at the start.

10 В

 $Na(g) \rightarrow Na^{+}(g) + e^{-}$ $\Delta H = W = 1^{\text{st}} \text{IE}$

 $Na(g) \rightarrow Na^{2+}(g) + 2e^{-}$ $\Delta H = x$ $\Delta H = x = 1^{st} IE + 2^{nd} IE = w + 2^{nd} IE$ Hence, 2^{nd} IE = x - w (Option B)

OR

 $Na(s) \rightarrow Na(g)$ $\Delta H = y =$ enthalpy change of atomisation

 $Na(s) \rightarrow Na^{2+}(g) + 2e^{-}$

 $\Delta H = z =$ enthalpy change of atomisation + 1st IE + 2nd IE

 2^{nd} IE = z – enthalpy change of atomisation – 1^{st} IE = z - y - w (This option is not given)

11 С

Option A: Wrong

Six water ligands have been displaced by one edta ligand. As the number of free ligands increases, entropy also increases.

Option B: Wrong

When gases are mixed at constant pressure, the volume of the mixture increases, leading to more ways to arrange particles. Hence, entropy increases.

Option C: Correct

A decrease in temperature of liquid ethanol decreases entropy.

Option D: Wrong

A change in state from solid to gas (sublimation) should result in an increase in entropy.

12 D

Option A: Wrong

Since the gradient of tangent at t = 0 min (initial rate) increases by two times when the initial [Y] doubles, the reaction is first order wrt Y.

Since the $t_{1/2}$ of **X** is constant at 20 min, the reaction is first order wrt **X**.

Hence, rate = k[X][Y] and the unit of k is $mol^{-1} dm^{3} min^{-1}$.

Option B: Wrong

Based on the rate equation, 1 molecule of **X** and 1 molecule of **Y** are involved in the slow step of the mechanism. The reaction will mostly likely proceed in more than one step as follows:

 $X + Y \rightarrow D$ (slow)

$\mathbf{X} + \mathbf{D} \rightarrow \mathbf{Z}$

where **D** is an intermediate Hence, the reaction does not proceed via a single-step mechanism.

Option C: Wrong

rate = k[X][Y], since Y is in excess, hence rate = k'[X] where k' = k[Y] $t_{1/2} = \frac{\ln 2}{k'} \rightarrow t_{1/2} = \frac{\ln 2}{k[Y]}$ Hence, when [Y] doubles, $t_{1/2}$ is halved.

Option D: Correct

Since $t_{1/2} = \frac{\ln 2}{k[Y]}$, when **[X]** doubles, $t_{1/2}$ remains the same.

13 B (1 and 2 only) Option 1: Correct:

As temperature increases, since the average kinetic energy of the molecules increases, the fraction of molecules having energy above the activation energy increases.

Option 2: Correct

As temperature increases, since the average kinetic energy of the molecules increases, there will be more molecules having higher energy and hence the maximum of the curve is displaced to the right.

Option 3: Wrong

As temperature increases, there will be more molecules having higher energy and lesser molecules having lower energy. Hence, the proportion of molecules of a particular energy does not increase at all energies.

14 B

At initial equilibrium, $K_c = [\mathbf{Y}]/[\mathbf{W}]^2[\mathbf{X}]$ $= (2.00)/(2.00)^2(1.00)$ = 0.50 Assuming z mol of \mathbf{Y} is added to the equilibrium mixture.

$2W(aq) + X(aq) \Rightarrow Y(aq)$						
Initial conc.	2.00	1.00	2.00 + z			
/ mol dm ⁻³						
Change in conc.	+2(0.20)	+0.20	-0.20			
/ mol dm ⁻³						
Eqm Conc.	2.40	1.20	1.80 + z			
/ mol dm ⁻³						

For the new equilibrium,

С

 $K_c = (1.80 + z) / [(2.40)^2(1.20)] = 0.50$ z = 1.66 mol dm⁻³ Since it is 0.50 dm³ solution, therefore the amount added = (1.66)(0.50) = 0.83 mol

15

Upon adding water, $[H^+] = 10^{-3.2} \text{ mol dm}^{-3}$ Using $K_a = 1.80 \times 10^{-5}$ $= [H^+]^2/[CH_3CO_2H]$ $1.80 \times 10^{-5} = (10^{-3.2})^2/[CH_3CO_2H]$ $[CH_3CO_2H] = 0.0221 \text{ mol dm}^{-3}$

Upon dilution, no. of moles of CH₃COOH remains unchanged. $0.0221V = 10 \times 0.100$ $V = 45.2 \text{ cm}^3$

Hence, vol. of the final solution with water added = 45.2 cm^3

Vol. of water added = 45.2 - 10= 35.2 cm^3

16 B

A buffer is comprised of a weak acid and its conjugate base or a weak base and its conjugate acid.

Option A: Wrong

HCl is a strong acid. HCl and its conjugate base cannot form a buffer solution.

Option B: Correct

 $H_2PO_4^-$ is a weak acid. HPO_4^{2-} is the conjugate base of $H_2PO_4^-$. They can form a buffer solution.

Option C: Wrong

NaOH is a strong base and it cannot form a buffer solution with NaC*l*.

Option D: Wrong

When 1 mol of $H_2PO_4^-$ is reacted completely with 1 mol of NaOH, HPO_4^{2-} is formed. It is a weak acid solution but a buffer solution.

17 C

When ZnF_2 is shaken with water to obtain a saturated solution *L*,

$$\begin{split} &ZnF_2(s) \rightleftharpoons Zn^{2+}(aq) + 2F^{-}(aq) \\ &Let the solubility of ZnF_2 be x mol dm^{-3} \\ &At eqm (when the saturated solution$$
L $is formed), \\ &[Zn^{2+}] = x mol dm^{-3}, [F^{-}] = 2x mol dm^{-3} \\ &K_{sp} of ZnF_2 = [Zn^{2+}][F^{-}]^2 \\ &= x(2x)^2 \\ &= 3.20 \times 10^{-2} \\ &4x^3 = 3.20 \times 10^{-2} \\ &x = 0.200 mol dm^{-3} \\ &Hence, [F^{-}] at saturated solution L \\ &= 4.00 \times 10^{-1} mol dm^{-3} \end{split}$

When Ba²⁺ is added dropwise to *L* containing 4.00×10^{-1} mol dm⁻³ of F⁻, BaF₂ just ppt out when ionic product of BaF₂ > K_{sp} of BaF₂ [Ba²⁺][F⁻]² > 1.60 × 10⁻⁷ [Ba²⁺][4.00 × 10⁻¹]² > 1.6 × 10⁻⁷ [Ba²⁺] > 1.00 × 10⁻⁶ mol dm⁻³

Hence, [Ba²⁺] when BaF₂ just precipitates is 1.00×10^{-6} mol dm⁻³.

18 D

(A) σ bond formed by 1s-2sp overlap H-C=C-CH₃ \rightleftharpoons H₂C=C=CH₂ (C) sp hydridised carbons

Option **D** is wrong as the C–C single bond in propyne is formed by sp-sp³ overlap, while that in propane (CH₃–CH₂–CH₃) is formed by sp³-sp³ overlap. The bond length in propyne is shorter as sp orbital has more s character, resulting in more effective overlap.

There are three chiral centres in the molecules as indicated by \bigcirc No of stereoisomers: 2³=8 isomers

20 C

Prop-1-ene reacts with BrC*l* in pure CH₃OH via electrophilic addition as illustrated in the following steps:

electrophilic addition of H_2O to propene.

Once the strong electrophile (a carbocation) is formed, it will undergo electrophilic substitution with the benzene.

22 A Option A: Correct

The primary chloroalkane undergoes S_N2 reaction, resulting in the inversion of the spatial configuration of the product from that of the starting organic molecule. Since S_N2 occurs with 100% inversion, the product formed will therefore contain a single enantiomer and not a racemic mixture.

Option B: Wrong

The tertiary chloroalkane undergoes S_N1 reaction, forming a carbocation intermediate. The OH⁻ can then attack the planar carbocation intermediate with equal probability from top and bottom, forming a racemic mixture with two enantiomers.

Option C: Wrong

CN⁻ attacks the planar ketone via nucleophilic addition with equal probability from top and bottom, forming a racemic mixture with two enantiomers.

Option D: Wrong

The alkene undergoes electrophilic addition, forming planar carbocation intermediate. Br- can then attack the carbocation intermediate with equal probability from top and bottom, forming a racemic mixture with two enantiomers.

23 C

Option A: Wrong

There are 4 phenol functional group in Z. Thus, 1 mol of Z reacts with 4 mol of NaOH(aq).

Option B: Wrong

There are 4 phenol functional group and 1 alcohol functional group in Z. 1 mol of Z reacts with 5 mol of sodium to produce 2.5 moles of $H_2(g)$.

Option C: Correct

Promote to $\dot{O}H_{constrainty}$ with $D_{12}(aq)$ and electrophilic substitution to form 2,4,6-tribromophenol. Hence, when 1 mol of compound Z reacts with $Br_2(aq)$, Br can substitute the H atoms labelled a, b, d, e and f. Hence, 1 mol of Z reacts with 5 mol of $Br_2(aq)$.

Option D: Wrong

Only alcohol and not phenol will react with PCl_5 to form HCl gas. Hence, 1 mol of **Z** will react with 1 mol of PCl_5 to form 1 mol of HCl gas.

24 A

25 B (1 and 3 only)

Compound **Y** has the following functional groups: alkene, aldehyde and chloroalkane

Compound **Z** has the following functional groups: secondary alcohol and amide

Option 1: Correct

2,4-DNPH reacts with aldehydes and ketones to give an orange ppt. Compound **Y** containing aldehyde will give an orange ppt while compound **Z** will not.

Option 2: Wrong

Hot acidified $Cr_2O_7^{2-}$ can oxidise primary alcohols, secondary alcohols and aldehydes. Compound **Y** will get oxidised as it contains an aldehyde. Compound **Z** will also get oxidised as it contains a secondary alcohol.

Option 3: Correct

Hot aqueous NaOH can react with halogenoalkanes, esters, amides and nitriles. Compound **Y** containing chloroalkane will react via nucleophilic substitution to give Cl^- but this does not give an observable change unless aqueous AgNO₃ is added. Compound **Z** containing amide reacts via hydrolysis to form gaseous NH₃ which can be detected with moist red litmus paper turning blue.

26 B (2 and 4 only) Option 1: Wrong

The surface area decreases from primary (elongated) to secondary to tertiary alcohol (spherical). Hence strength of instantaneous dipole-induced dipole interactions decreases from primary to secondary to tertiary alcohols, leading to decreasing boiling points.

Option 2: Correct

 CH_3CH_2COCl hydrolyses in water to produce a strong acid, HCl. Hence the pH of its aqueous solution is the lowest. $CH_3CH_2CONH_2$ contains an amide functional group which is neutral. $CH_3CH(Cl)CH_2NH_2$ contains an amine functional group which is basic and hence its pH value is the highest.

Option 3: Wrong

The carbonyl C in CH₃COC*l* is bonded to the highly electronegative O and C*l* atoms, making it highly electron deficient due to the electron-withdrawing inductive effect of the two atoms. Hence, it is more susceptible to nucleophilic attack in hydrolysis than CH₃CH₂C*l* and C₆H₅C*l*. Due to the partial double bond character of C–C*l* bond in C₆H₅C*l*, C₆H₅C*l* hydrolyses the least readily.

Option 4: Correct

Acidity decreases from ethanoic acid to phenol to ethanol.

Ethanoic acid is the strongest acid among the three, hence its conjugate base, ethanoate ion will be the weakest, with the largest pK_b value.

Ethanol is the weakest acid among the three, hence its conjugate base, ethoxide ion will be the strongest, with the smallest pK_b value.

27

R

Since there are five peptides, 4 mol is needed for the hydrolysis.

 $M_{\rm r}$ of **X** + 4 × 18 = 2 × 75 + 89 + 2 × 105 $M_{\rm r}$ of **X** = 377

28 C (2 and 3 only) $Cu^{2+} + 2e^{-} \Rightarrow Cu$ $E^{\circ} = +0.34 \text{ V}$ $Cr_2O_7^{2-} + 14H^+ + 6e^{-} \Rightarrow 2Cr^{3+} + 7H_2O$ $E^{\circ} = +1.33 \text{ V}$

 $Cr_2O_7^{2-}/Cr^{3+}$ half-cell undergoes reduction due to the more positive E^0 value while Cu^{2+}/Cu half-cell undergoes oxidation.

 $E^{o}_{cell} = E^{o}_{red} - E^{o}_{ox}$ = 1.33 - 0.34 = +0.99 V

Option 1: Wrong

E.m.f of the electrochemical cell is not affected by the increase in surface area of the Cu electrode.

Option 2: Correct

Excess NH₃(aq) added will decrease [Cu²⁺] as Cu²⁺ will form a complex ion with NH₃. As such, position equilibrium of Cu²⁺ + 2e⁻ \rightleftharpoons Cu will shift left, oxidation of Cu is favoured and E^{o}_{ox} becomes less positive, leading to an increase in e.m.f of cell.

Option 3: Correct

Adding dilute H₂SO₄ to Cr₂O₇²⁻/Cr³⁺ half-cell will increase [H⁺], position of equilibrium of Cr₂O₇²⁻ + 14H⁺ + 6e⁻ \Rightarrow 2Cr³⁺ + 7H₂O will shift right, reduction of Cr₂O₇²⁻ is favoured and *E*^o_{red} becomes more positive, leading to an increase in e.m.f of cell.

29 A

Ligand needs to have a lone pair. NH_{4^+} does not have a lone pair and thus it does not act as a ligand.

30 A

Option A: Wrong

The complex does not contain five ligands. There is only one polydentate ligand.

Option B: Correct

The ligand carries two O⁻, as such, manganese exists as Mn^{2+} in the complex as the complex is electrically neutral. Oxidation number of manganese in this complex is +2.

Option C: Correct

As there are five dative covalent bonds formed into the Mn^{2+} ion, the coordination number is 5.

Option D: Correct

 Mn^{2+} : [Ar]3d⁵. The two 4s electrons have been removed in the formation of Mn^{2+} from Mn, resulting in 5 unpaired 3d electrons in manganese in this complex.