

Tutorial 3C

Vectors III: Equations of Planes

Section A (Basic Questions)

- (x) The Cartesian equation of the plane π is 3x y + 4z = -2. State the equation of π in scalar product form.
 - (b) The equation of the plane π is $\mathbf{r} \cdot (-\mathbf{i} + \mathbf{j} + 2\mathbf{k}) = 4$. Write down the Cartesian equation of π , and find a vector equation of π , involving two parameters.
 - (c) The vector equation of the plane π is $\mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + t \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$, $s, t \in \mathbb{R}$. Find the

equation of π in both the scalar product form and the Cartesian form.

[(a)
$$\mathbf{r} \cdot (3\mathbf{i} - \mathbf{j} + 4\mathbf{k}) = -2$$
, (b) $-x + y + 2z = 4$, $\mathbf{r} = (-4\mathbf{i}) + \lambda(\mathbf{i} + \mathbf{j}) + \mu(2\mathbf{i} + \mathbf{k})$, $\lambda, \mu \in \mathbb{R}$
(c) $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = -4$, $x + 2y + 2z = -4$

- For each of the following cases, find the equation of the plane π_1 in scalar product form.
 - (a) π_1 contains the point A(2,-4,7) which is the foot of perpendicular from the origin to π_1 .
 - (b) π_1 contains the point B(1,-2,0) and is parallel to the plane $\pi_2: 2x-y+3z=-1$.
 - (c) π_1 passes through the points C(2,3,3), D(0,1,0), and E(-1,5,1).
 - (d) π_1 contains the lines $l_1: x+3=y-1, z=-1$ and $l_2: \mathbf{r} = (-3-t)\mathbf{i} + \mathbf{j} (1+t)\mathbf{k}, t \in \mathbb{R}$.
 - (g) π_1 contains the line $l: \mathbf{r} = (-2\mathbf{i} + 5\mathbf{j} 3\mathbf{k}) + \lambda(2\mathbf{i} + \mathbf{j} + 2\mathbf{k}), \ \lambda \in \mathbb{R}$ and is perpendicular to the plane $\pi_2 : \mathbf{r} \cdot (7\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}) = 2$.
- f) π_1 passes through the points F(1,1,1) and G(3,2,2) and is perpendicular to the plane π_2 that is parallel to the vectors $-\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $2\mathbf{i} - \mathbf{j} + \mathbf{k}$.
 - $(a) r \cdot (2i-4j+7k) = 69$
- (b) $\mathbf{r} \cdot (2\mathbf{i} \mathbf{j} + 3\mathbf{k}) = 4$
- (c) $\mathbf{r} \cdot (2\mathbf{i} + \mathbf{j} 2\mathbf{k}) = 1$

- (d) $\mathbf{r} \cdot (-\mathbf{i} + \mathbf{j} + \mathbf{k}) = 3$
- (e) $\mathbf{r} \cdot (-3\mathbf{i} + 4\mathbf{j} + \mathbf{k}) = 23$ (f) $\mathbf{r} \cdot (-\mathbf{i} + \mathbf{j} + \mathbf{k}) = 1$
- (a) Find the point of intersection of the line $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ and the plane $\mathbf{r} \cdot (2\mathbf{i} \mathbf{j} + \mathbf{k}) = 5$.
 - **(b)** Show that the line $l: \frac{x-2}{1} = \frac{y-3}{1} = \frac{z}{-1}$ is contained in the plane $\pi: 3x y + 2z = 3$.

(a) (1,3,6)]

Section B (Standard Questions)

- 4 (a) Find the perpendicular distance from the origin to the plane $\mathbf{r} \cdot (4\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}) = 9$.
 - (b) Show that the planes 2x y + 3z = 7 and -4x + 2y 6z = 3 are parallel and find the distance between them.
 - (e) Find the angle between the planes x+3y-6z=-2 and x+5y+2z=8.

[(a) 1 unit (b)
$$\frac{17\sqrt{14}}{28}$$
 units

NJC Prelim 9740/2008/01/Q10

A line I is given by the equation $\mathbf{r} = 2\mathbf{i} + \mathbf{k} + \lambda (\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}), \ \lambda \in \mathbb{R}$ and the point P has position vector $2\mathbf{i} - \mathbf{j} - 3\mathbf{k}$ relative to the origin. W is a point on I such that the line PN is perpendicular to 1.

(i) Show that
$$\overrightarrow{PN} = \frac{1}{7} (5i + 17j + 13k)$$
.

- (ii) The plane Π_1 has equation $\mathbf{r} \cdot (3\mathbf{i} + \mathbf{k}) = 7$. Verify that I lies in Π_1 and find the perpendicular distance from point P to Π_1 .
 - (iii) A second plane Π_2 contains I and P. Using your answers above, or otherwise, determine the [2] acute angle between Π_1 and Π_2 .
 - (iv) A third plane Π_3 has equation $\mathbf{r} \cdot (-\mathbf{j} + 5\mathbf{k}) = 22$. Determine the position vector of the point of intersection between planes Π_1 , Π_2 and Π_3 .

[(ii)
$$\frac{4}{\sqrt{10}}$$

[(ii)
$$\frac{4}{\sqrt{10}}$$
 (iii) 23.8° (iv) $\begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$]

9740/2014/01/Q9

Planes p and q are perpendicular. Plane p has equation x+2y-3z=12. Plane q contains the line *l* with equation $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{4}$. The point *A* on *l* has coordinates (1,-1,3).

(i) Find a cartesian equation of q.

[4]

(ii) Find a vector equation of the line m where p and q meet.

- [4]
- (iii) B is a general point on m. Find an expression for the square of the distance AB. Hence, or otherwise, find the coordinates of the point on m which is nearest to A[5]

[(i)
$$-x+2y+z=0$$
 (ii) $\mathbf{r} = \begin{pmatrix} 6 \\ 3 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}, \ \mu \in \mathbb{R}$ (iii) $21\mu^2 + 36\mu + 50$; $\left(\frac{18}{7}, \frac{15}{7}, -\frac{12}{7}\right)$]

7 PJC Prelim 9740/2011/01/Q12 (modified)

The position vectors of the points A, B, C are $\begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 3 \\ -3 \end{pmatrix}$, $\begin{pmatrix} -9 \\ 2 \\ 6 \end{pmatrix}$ respectively.

(i) Given that A, B, C lies on plane Π_1 , show that the equation of Π_1 is $\mathbf{r} \cdot \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix} = -9$. [2]

The equations of the plane Π_2 and the line l are $\mathbf{r} \cdot \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} = -6$ and $\mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ -2 \\ 3 \end{pmatrix}, \mu \in \mathbb{R}$ respectively.

(fi) Find the position vector of the foot of the perpendicular from A to the plane H_2 [3]

(iii) Find a vector equation of the line of intersection between Π_1 and Π_2 . [2]

(iv) The plane II_3 has the Cartesian equation ax + by + cz = 3, where a, b and c are constants.

 Π_1 , Π_2 and Π_3 intersect in a line, and the point with position vector $\begin{pmatrix} 5 \\ -12 \\ 2 \end{pmatrix}$ lies on Π_3 .

Find a, b and c. Hence find the acute angle between Π_3 and l.

[5]

[(ii) $\frac{1}{21} \begin{pmatrix} 4 \\ 40 \\ -62 \end{pmatrix}$, (iii) $r = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 3 \\ 10 \end{pmatrix}$, $\lambda \in \mathbb{R}$, (iv) a = 3, b = 1, c = 0, 25.0° J

8 9740/2013/02/Q4

The planes p_1 and p_2 have equations $\mathbf{r} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = 1$ and $\mathbf{r} \cdot \begin{pmatrix} -6 \\ 3 \\ 2 \end{pmatrix} = -1$ respectively, and meet in the

line l.

(i) Find the acut e angle between p_1 and p_2 .

[3]

(ii) Find a vector equation for l.

[4]

(iii) The point A(4, 3, c) is equidistant from the planes p_1 and p_2 . Calculate the two possible values of c.

[(i)
$$40.4^{\circ}$$
 (ii) $\underline{r} = \begin{pmatrix} -\frac{1}{6} \\ -\frac{2}{3} \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} \frac{7}{6} \\ \frac{5}{3} \\ 1 \end{pmatrix}, \lambda \in \mathbb{R}$ (iii) $c = \frac{35}{13} \text{ or } -49$

HCI Prelim 9740/2010/01/Q11 modified

The diagram above shows part of the structure of a modern art museum designed by Marcus, with a horizontal base OAB and vertical wall OADC. Perpendicular unit vectors i, j, k are such that i and k are parallel to OA and OC respectively.

The walls of the museum BCD and ABD can be described respectively by the equations

$$\mathbf{r} \cdot \begin{pmatrix} -1 \\ -5 \\ 6 \end{pmatrix} = 36$$
 and $\mathbf{r} = \begin{pmatrix} 14 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 5 \\ 4 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$, where $\lambda, \mu \in \mathbb{R}$.

- (i) Write down the distance of A from O
- [1](ii) Find the vector equation of the intersection line of the two walls BCD and ABD. [3]
- (iii) Marcus wishes to repaint the inner wall ABD. Find the area of this wall. [3]

Suppose Marcus wishes to divide the structure into two by adding a partition such that it intersects with the walls BCD and ABD at a line. This partition can be described by the equation $2x - 7y + \alpha z = \beta$, where $\alpha, \beta \in \mathbb{R}$.

(iv) Find the values of
$$\alpha$$
 and β .

[2] [1]

[(i)
$$OA = 14$$
 (ii) $r = \begin{pmatrix} 4 \\ -8 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \gamma \in \mathbb{R}$ (iii) 51.8 (iv) $\alpha = 5, \beta = 64$]

AJC Prelim 9234/2006/01/Q8(modified) 10

The plane π contains the origin and is parallel to vectors $-\mathbf{i} + \mathbf{k}$ and $\mathbf{i} + 2\mathbf{j}$. A point P with position vector 3i + j + 2k is reflected about the plane π .

Find the position vector of the foot N of the perpendicular from P to the plane π . Hence, show that the position vector of P', the reflection of P about π is -i+3j-2k. [4]

A line *l* passes through the point *P* and is parallel to i-j+3k.

- Find the position vector of the intersection point between l and π .
- (iii) Hence or otherwise, find the equation of the line l', the reflection of line l about π .

[(i)
$$\overrightarrow{ON} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ (iii) $\underline{r} = \begin{pmatrix} -1 \\ 3 \\ -2 \end{pmatrix} + \gamma \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}, \gamma \in \mathbb{R}$]

Section C (Extension/Challenging Questions)

11 9234/ 2003/01/Q9

The line l_1 passes through the point A with position vector $\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ and is parallel to the vector $3\mathbf{i} - 4\mathbf{j} - 2\mathbf{k}$. The variable line l_2 passes through the point

$$(1+5\cos t)i - (1+5\sin t)j - 14k$$
, where $0 \le t \le 2\pi$,

and is parallel to that vector $15\mathbf{i} + 8\mathbf{j} - 3\mathbf{k}$. The points P and Q are on I_1 and I_2 respectively, and PQ is perpendicular to both I_1 and I_2 .

- (i) Find the length of PQ in terms of t.
- (ii) Hence show that the lines l_1 and l_2 do not intersect, and find the maximum length of PQ as t varies.
- (iii) The plane π_1 contains the line l_1 and PQ; the plane π_2 contains l_2 and PQ. Find the angle between the planes π_1 and π_2 .

[(i)
$$\frac{1}{13}(144-20\cos t-15\sin t)$$
, (ii) 13 units, (iii) 78.2°]

12 9234/19 89/01/Q12

With respect to an origin O, the points A, B and C, which are not coplanar with O, have position vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} respectively. The points L, M and N are on the line segment OA, AB, and OC respectively, and are such that OL = LA, 2AM = MB and ON = 3NC. The line MN meets the plane LBC at the point Q.

- (i) Write down, in terms of a, b, and c, the position vectors of L, M and N.
- (ii) Show that the position vector of any point on MN can be expressed in the form $\frac{2}{3}t\mathbf{a} + \frac{1}{3}t\mathbf{b} + \frac{3}{4}(1-t)\mathbf{c}$.
- (iii) Show that the position vector of any point in the plane *LBC* can be expressed in the form $\frac{1}{2}(1-\lambda-\mu)\mathbf{a}+\lambda\mathbf{b}+\mu\mathbf{c}$.
- (iv) Hence, or otherwise, find the numerical value of $\frac{NQ}{QM}$.

[(i)
$$\overrightarrow{OL} = \frac{1}{2}a$$
, $\overrightarrow{OM} = \frac{1}{3}(2a+b)$, $\overrightarrow{ON} = \frac{3}{4}c$, (iv) $\frac{3}{8}$]

13 9234/1991 /01/Q11

The points A and B have position vectors \mathbf{a} and \mathbf{b} respectively. The plane π , with vector equation $\mathbf{r} = \mathbf{b} + \lambda \mathbf{u} + \mu \mathbf{v}$, where λ and μ are real parameters, contains B and does not contain A.

- (i) Show that the perpendicular distance of A from π is p, where $p = \frac{|(\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{b} \mathbf{a})|}{|\mathbf{u} \times \mathbf{v}|}$.
- (ii) The perpendicular from A to π meets π at C, and D is the point on AB such that CD is perpendicular to AB. Show that $AD = \frac{p^2}{AB}$ and hence, or otherwise, show that the position

vector of D is
$$\mathbf{a} + \left(\frac{p}{|\mathbf{b} - \mathbf{a}|}\right)^2 (\mathbf{b} - \mathbf{a})$$
.

In the case where $\mathbf{a} = -\mathbf{i} + 7\mathbf{j} + 8\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + 7\mathbf{j} + 5\mathbf{k}$, $\mathbf{u} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{v} = 3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, find the value of p, and show that $\overline{CD} = \frac{8\sqrt{2}}{9}\mathbf{x} + \frac{4}{9}\mathbf{y}$, where \mathbf{x} and \mathbf{y} are the unit vectors of \overline{CB} and \overline{CA} respectively.

[(ii)
$$p = 4$$
]

Section D (Self Practice Questions)

1 JJC Promo 9740/2006/Q9

The plane has vector equation $\mathbf{r} = 9\mathbf{i} + 3\mathbf{k} + \alpha(\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}) + \beta(3\mathbf{i} - 2\mathbf{j} + 6\mathbf{k})$, where α and β are real parameters. The line through O perpendicular to Π meets Π at P. Find the position vector of P.

Given that Q is the point with coordinates (1, 5, 7), find the length of the projection of PQ onto the plane Π .

The plane Π_i has equation $\mathbf{r} \cdot (-2\mathbf{i} + 13\mathbf{j} + 25\mathbf{k}) = 11$. Find a vector equation of the line of intersection of Π and Π_i .

$$[\overrightarrow{OP} = 6\mathbf{i} - 3\mathbf{k}; \sqrt{70}; \mathbf{r} = \begin{pmatrix} 15/2 \\ 2 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 13 \\ -48 \\ 26 \end{pmatrix}, \mu \in \mathbb{R}]$$

2 AJC Mid year Paper 9740/2007/Q9

The equation of the plane Π_1 is x+y-2z=3.

- (i) Find the vector equation of the line l_1 , which lies in both the plane Π_1 and the yz plane.
- (ii) Another plane Π_2 contains the line l_2 with equation x=1, $\frac{y+1}{2}=z$ and is perpendicular to Π_1 . Find the equation of the plane Π_2 in scalar product form. Determine whether l_1 lies on Π_2 .

[(i)
$$\mathbf{r} = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \lambda \in \mathbb{R}$$
 (ii) $\mathbf{r} \cdot \begin{pmatrix} 5 \\ -1 \\ 2 \end{pmatrix} = 6$]

3 RI Y6 Common Test 9740/2007/Q8 modified

- (i) The plane Π_1 and the line I_1 have equations $\mathbf{r} \cdot \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = 4$ and $\mathbf{r} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ where $\lambda \in \mathbb{R}$, respectively. Show that I_1 lies on Π_1 .
- (ii) Another plane Π_2 contains l_1 and is perpendicular to Π_1 . Find an equation of Π_2 in the form $\mathbf{r} \cdot \mathbf{n} = p$.
- (iii) A third plane Π_3 has a normal parallel to $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ and passes through the origin. Write down an equation for Π_3 .

[(ii)
$$\mathbf{r} \cdot \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix} = -5$$
 (iii) $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0$]

4 TJC Mid Year Paper 9740/2007/Q7

The line ℓ whose vector equation is $\mathbf{r} = 5\mathbf{i} + 2\mathbf{j} - 3\mathbf{k} + \alpha (7\mathbf{i} - 2\mathbf{j} - 3\mathbf{k})$ passes through the point A with position vector $5\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$. The plane π whose vector equation is $\mathbf{r} = -5\mathbf{i} + 2\mathbf{j} + 2\mathbf{k} + \beta (7\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}) + \gamma (9\mathbf{i} - \mathbf{j} + \mathbf{k})$ contains the point B with position vector $-5\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$.

- (i) Find the position vector of the point P on the line segment AB such that AP: PB = 4:1.
- (ii) The plane π_1 contains the line ℓ and the point P.

Write down a vector equation of the line of intersection of π and π_1 .

Find the vector equation of π_1 and the angle between π and π_1 .

Hence find the ratio of the perpendicular distances from P to the line ℓ and from P to the plane π .

[(i)
$$\begin{pmatrix} -3\\2\\1 \end{pmatrix}$$
 (ii) $r = \begin{pmatrix} 5\\2\\-3 \end{pmatrix} + s \begin{pmatrix} 7\\-2\\-3 \end{pmatrix} + t \begin{pmatrix} -2\\0\\1 \end{pmatrix}$ or $r \cdot \begin{pmatrix} 2\\1\\4 \end{pmatrix} = 0$; 90^0 ; $4:1$]

5 IJC Prelim 9740/2008/02/Q4 modified

The line l has equation $\mathbf{r} = \mathbf{j} + \mathbf{k} + \lambda (\mathbf{i} - 2\mathbf{j} + \mathbf{k}), \lambda \in \mathbb{R}$. The plane π_l has equation x + 2y + 3z = 5. The point A on l is given by $\lambda = 2$ and the point B has position vector $2\mathbf{i} + \mathbf{j} + 4\mathbf{k}$.

(i) Show that the line l lies in the plane π_1 .

[2]

(ii) Find the acute angle between the line AB and the plane π_1 .

- [4]
- (iii) The plane π_2 is perpendicular to the plane π_1 and parallel to the line l, and contains the point B. Find the equation of π_2 .

[(ii)
$$45.5^{\circ}$$
 (iii) $\mathbf{r} \cdot \begin{pmatrix} 4 \\ 1 \\ -2 \end{pmatrix} = 1$]

THE END