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1 A function f is defined by 3 2f ( ) .x ax bx cx d= + + +  The graph of f ( )y x=  passes 

through the points ( 3, 4)−  and (1,8) . Given that the graph of 1
f ( )

y
x

=  has a turning 

point at 1
4(2, ),  find the values of , ,  and .a b c d                                                                     [4]                                                                                                      
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2 [The volume of a sphere with radius r is given by 34
3 rπ  and the surface area of a 

sphere with radius r is given by 24 rπ .] 
   

 (a) The volume of an expanding sphere is increasing at a constant rate of 
3 15 cm s .−  Show that, at any instant, the rate of increase of the surface area is 
2 1cm s ,k

r
−  where r is the radius of the sphere and k is a constant to be 

determined.                             [3]                        
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Find the exact rate of change of surface area of the expanding sphere when 
the surface area is 220 cm .  [2] 
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(a) Without using a calculator, solve exactly 
2 1 1.

1
x

x
x − −

≤
+

 [4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
(b) Hence solve exactly 

2 1
1

1
x x

x
−+

≤
−

. [4] 
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4 

 
(a) Find cos d .

cos3 cos
x x

x x+
⌠
⌡

 [3] 

 

 

 

 

 

 

 

 

 

 

 

 

  

(b) Find 1 2tan dx x x−∫ . Hence find the exact value of 
1 1 2

1
tan d .x x x−

−∫  [5] 
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(a) Using the formulae for , prove that 

                    ( ) ( )sin 2 1 sin 2 1 2cos 2 sinr r rθ θ θ θ+ − − = . [1] 
 

 

 

 

 

 

 

 

  

(b) Hence find a formula for 
1
cos 2 ,   where 0 ,

n

r
rθ θ π

=

< <∑  in terms of 

( )sin 2 1n θ+  and sinθ . [3] 
  

( )sin A B±
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 (c) Using the formula found in part (b), show that the sum of the series 
 

              2 2 2 2sin 10 sin 11 sin 12 ... sin 20 ,  for 0θ θ θ θ θ π+ + + + < <   
 

is sin(41 ) sin(19 )
4sin

k θ θ
θ

−
− , where k is a constant to be determined.  [4] 

   
   
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

CHair
pe

rso
n



8 
 

H2 MA 9758/2024 RI Year 6 Preliminary Examination Paper 1 

6 (a) The diagram below shows the graph of f ( )y x= .  
   

 
 
 
 
 
 
 
 
 
 
 

  The graph cuts the x-axis at point A (5,0) . It has a turning point at (12, )B k , 
where 0k <  and asymptotes with equations 0x =  and 0y = . On separate 
diagrams, sketch the graph of   

   

  (i) 2f ( )y x k= + , stating the equations of any asymptotes and the 
coordinates of any turning point(s). [2] 
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  (ii) f ( )y x′= , stating the equations of any asymptotes and the coordinates of 
any point(s) where the curve crosses the axes. [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(b) The graph with equation g( )y x= , where 2g( ) ( 1)x x x= − undergoes a single 
transformation and the equation of the resultant graph is h( )y x= . Describe 
the transformation if  

   

  (i) 2h( ) ( 1) ,x x x= − +                                                                                       [1] 
   

 

 

 

 

 

  (ii) 21h( ) ( 2) .
8

x x x= −                                                                                      [2] 
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7 An arithmetic series has first term a and common difference d, where 0a >  and 0d ≠ . 
The first, sixth and ninth terms of the arithmetic series are consecutive terms of a 
geometric series. 

   

 (a) Show that 25 2d a= − . [2] 
   
   
   

 

 

 

 

 

 

 

 

 (b) The sum of the first n terms of the arithmetic series is denoted by S. Find the 
set of possible values of n for which S exceeds 6a. [3] 
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 (c) Find the common ratio of the geometric series, and deduce that the geometric 
series is convergent.          [2] 

 

 

 

 

 

 

 

 

 

 

   
 

 

 (d) Hence find the smallest value of m such that the sum of the terms of the 
geometric series after, but not including, the mth term, is less than 1% of the 
sum to infinity.   [3] 
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8 Do not use a calculator in answering this question.  
 

 
 

(a) The complex number w is such that i ,w a b= +   where a and b are non-zero real 
numbers. The complex conjugate of w is denoted by w∗  . Given that         
     

                                           4 2i 2iww w∗ ∗= − + ,  
 

find the two possible values of w.                                                                      [4]                                                                                                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

   
  

(b) The complex number z is given by 1 3 i
1 i

z −
=

− +
. 

   

  (i) Find arg(z).  [3] 
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  (ii) Find z in cartesian form ix y+ .  [2] 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  (iii) Hence find the value of tan
12
π  in the form 3c d+ , where c and d are 

integers to be found.  [3] 
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9 A curve C has equation 2 by ax
x

= +  where a and b are non-zero real constants and 

0 .x ≠  
   

 (a) Using differentiation, determine whether C has any stationary points if 0ab < .
 [2] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

   
 It is now given that 1

2
b a=  where 0a > . 

   

 (b) Sketch C, stating the equations of any asymptotes, and the coordinates of any 
stationary points and points where C crosses the axes (if any). [3] 
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(c) State the range of values of  k, in terms of a, for which the equation 2 bax kx
x

+ =  

has no real roots. [1] 
   

 

 

 

 
 

 

(d) The region bounded by C, the axes, the lines 1
2

x =  and 4y a=  is rotated about 

the y-axis through 2π  radians. Show that the volume generated is given by      
  

                      
4 2 2 2 2

2 2

1 2 4  d
2 8

a

a
a y a y y a y

a
ππ + − − −∫ .  

 

Hence, find, in terms of a and π , the exact volume generated. [6] 
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10 For an upcoming motor-car race, a spectators’ gallery is to be set up near the racing 
track. As part of the preparations, a model of this gallery, shaped as a prism, is 
constructed.  

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The diagram above shows the model of the gallery with O as the origin and the unit 
vectors i, j and k are parallel to OA, OC and OE respectively. Points ( ,  ,  )x y z  are 
defined relative to O, where units are in metres.  
 

It is given that 1 m, OA CB= = 2 mOC AB ED= = =  and 0.5 m.OE CD= =    
   
 (a) Find a cartesian equation of the plane ABDE. [2] 
   

  

j 

 

O 

E 

A 

C B 

D 

k 

i 

2 m 

0.5 m 
1 m 

CHair
pe

rso
n



17 
 

 H2 MA 9758/2024 RI Year 6 Preliminary Examination Paper 1 [Turn over 

 A shelter is to be constructed above the plane ABDE. On the model, this shelter is a 
rectangular plane that intersects plane ABDE in the line ED.  

  

 (b) Given that the equation of the shelter is 0.5 ,x z h− + =  show that 0.5h = .  [1] 
   
 
 
 
 
 
 
 
 
 
 
 
 

  

 (c) Find the acute angle between the plane ABDE and the shelter. [2] 
 

 

 

 

 

 

 A spotlight is shone towards the gallery and the beam of light is in the form of a line l 
with cartesian equation ,  1x a z y− = =  for some real number a. The beam lands on a 
point M on the rectangular surface ABDE. 

  

 (d) Find in terms of a, the position vector of M, and hence find the range of values 
of a. [5] 
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(e) A large rectangular flat screen is to be placed in front of the gallery at a distance 
away. The screen can be taken to be part of a vertical plane with equation 

12 5 ,   where 50x y d d+ = > . Using 1
2

a = , find the value of d so that the 

shortest distance between point M and the screen is 4 m. [4] 
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11 A wafer fabrication company uses the floating-zone method to purify polysilicon 
ingots, each having a uniform cross-sectional area and a length of 200 cm. The method 
involves placing a polysilicon ingot with impurity concentration 0C  atoms/cm3 on top 
of a single seed crystal. The polysilicon ingot is then heated externally by an RF coil, 
which locally melts the ingot. The impurities prefer to stay in the molten state than in 
the solid state and thus as the coil and the melt zone move upwards, a single crystal, 
that is purer, solidifies on top of the seed crystal. A schematic illustration of the method 
is shown below in Fig. 1 and Fig. 2. 

 
 For a ‘floating’ melt zone of length L cm, the concentration of impurities in the melt 

zone, C atoms/cm3, and the distance moved by the RF coil, x cm, are related by the 
differential equation   

                  ( )0
d 1
d
C C kC
x L
= − ,    

   

where k  is a constant such that 0 1k< < .  
  

 The length of the “floating” melt zone, L cm, adopted by the company is 2 cm and 
0 198x≤ ≤ . It is also given that when x = 0, 0C C= . 

  

 (a) Solve the differential equation to find an expression for C in terms of 0 ,C  k and 
x.    [4] 

   
  

seed crystal 

polysilicon  
ingot 

polysilicon  
ingot 

RF coil 
melt zone 

 
Purer single 
crystal 

Fig. 1  Initial set-up Fig. 2  During purification process 
 

RF coil 

seed crystal 
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 (b) Sketch the graph of C against x. [2] 
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 (c) Assume that 0.3k =  and that the RF coil moves upwards at a constant speed of 
8 mm per hour. Find the time taken for the concentration of impurities in the 
melt zone to reach 02C  and the rate of change of the concentration of impurities, 
in terms of 0C  at this instant.  [5] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 The company decides to change the length of the “floating” melt zone. 
  

 (d) Explain, with a reason, whether a shorter length is preferable over a longer one. 
 [1] 
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