Catholic High School | O-Level Physics 5059 Nov 2014

NOT IN SYLLABUS:				
<u>P1:</u>	-			
<u>P2:</u>	-			

Paper I [40 marks							
1	С	11	B	21	D	31	С	
2	B	12	D	22	С	32	B	
3	B	13	B	23	D	33	В	
4	С	14	С	24	B	34	В	
5	Α	15	B	25	С	35	D	
6	С	16	B	26	Α	36	Α	
7	Α	17	Α	27	С	37	D	
8	B	18	B	28	D	38	D	
9	Α	19	B	29	Α	39	С	
10	D	20	Α	30	B	40	С	

т 40

Suggested Answers

*0.14: **(C)**

This question required the application of a standard fact to an unfamiliar situation. Some found this difficult.

[Note: The pressure of a gas is inversely proportional to its volume. When the tube is held upright: $P_{air} = P_{atm} + P_{Hg}$.

When the tube is held upside down: $P_{air} + P_{Hg} = P_{atm} \Rightarrow P_{air} = P_{atm} - P_{Hg}$. The reduction in pressure causes the volume of the air to increase, assuming temperature is constant.

(B is incorrect: Atmospheric pressure acts equally in all directions.)

(D is incorrect: Pressure is exerted equally in all directions.)

- **(B)** This question tested factual knowledge. A significant minority opted for A which incorrectly suggests that a gas has a fixed volume. (A is incorrect.)
- *Q. 16: **(B)** [Note: The better insulating materials take a longer time to heat up.] (D is incorrect.)
- This question required the application of a standard fact to an unfamiliar *Q. 20: **(A)** situation. Some found this difficult.

[Note: Evaporation causes cooling. There is no rise in temperature.] (D is incorrect.)

*0.15:

***Q. 22:** (C) Some found this question challenging.

[Note: Determine the angle between the original incident ray and the *reflected* ray.]

(A is incorrect.)

- *Q. 27: (C) [Note: The current flowing through a solenoid produces a magnetic field, and *not* an electric field.] (A is incorrect.)
- *Q. 28 (D) [Note: The two materials must be made of insulators and not conductors. so that they will not lose their excess charges when earthed.] (A is incorrect.)
- *Q. 32 (B)

This question asked about a poorly wired mains plug and the consequence of an error shown in the diagram. Many found this a challenging question.

[Note: The live and the neutral wires are both correctly plugged into the mains. The metal case is wrongly connected to the mains, through the live terminal.]

(A and D are incorrect.)

Paper	: 2 [80	marks]				
1	ai	Elastic potential energy	1			
	aii	Gravitational potential energy	1			
	bi	K.E. $= \frac{1}{2} \text{ mv}^2$				
		$1900 = \frac{1}{2}(45)(v^2)$	1			
		$v = 9.19 \text{ m s}^{-1} (3 \text{ s.f.})$	1			
	bii	Not all the elastic potential energy in the spring is transferred to the gymnast as K.E. Some of it is lost as thermal or sound energy <i>in the stretched spring</i> .	1			
2	ai The precision of a ruler is 0.1 cm. It is thus not possible to accurate measure the internal diameter of the washer, 0.80 cm, with the correspondence. [Or: It is difficult to place the ruler accurately across the diameter of the washer l					
	aii	Vernier calipers	1			
	bi	Volume $=\pi r^2 h$				
		= External volume - Internal volume $= \pi \left[\left(\frac{2.5}{2}\right)^2 - \left(\frac{0.80}{2}\right)^2 \right] (0.15)$ $= \underline{0.661 \text{ cm}^3} (3 \text{ s.f.})$ [Note: There is no need to convert the answer to m ³]	1 1			
	hii	Density mass				
	UII	Density $-\frac{1}{\text{volume}}$ = 5.2 ÷ 0.661 = <u>7.87 g cm⁻³</u> (3 s.f.) [Note: There is no need to convert the answer to kg m ⁻³ .]	1			
3	ai	Mass is the amount of substance in an object.	1			
		Weight is the amount of gravitatonal force acting on an object.				
	aii	W = mg [<u>Note</u> : g = gravitational field strength, N / kg] m = $\frac{W}{a}$ = 150 000 ÷ 10 = <u>15 000 kg</u> (3 s.f.)	1			
	hi	g Taking moments about point X:				
C	6	Sum of clockwise moments (Lift _{front})(7.0 + 5.0) = sum of anti-clockwise moments $= (150\ 000)(5.0)$ $= \frac{(150\ 000)\ (5.0)}{12.0}$ $= 62\ 500\ N\ (2\ o\ f)$	1			
	hii	$= \underline{62} \ \underline{500} \ \mathbf{N} \ (3 \ \mathbf{S}.\mathbf{I}.)$				
	UII	Sum of upward forces – sum of downward forces $Lift_{front} + Lift_{back} = 150\ 000$	1			
		L1Itback = $150000 - 62500$	1			
		$= \frac{\delta / JUU N}{C G} (5 \text{ s.i.})$	1			
	0	<i>Reduce</i> lift force at front rotor <i>and increase</i> lift force at heal rotor	1			
	*	[Note: It is insufficient to just decrease the lift force at front rotor: or just	1			
		increase the lift force at back rotor. This is because the question has stated				
		that the C.G. of the helicopter stays at the same height.]				

4	0		1
4	a		1
		Smoke Particle	
	b	1. The air molecules are in constant, random motion.	1
		2. The air molecules collide <i>unevenly</i> with the smoke particles.	1
	с	When the air molecules move faster, the frequency and <i>force</i> of collisions	1
		with the walls of the glass box increases.	
		Thus the force acting per unit area increases, and results in an increase in	1
		pressure of the air.	
5	a	As a liquid solidifies, the molecules have lower potential energy as	1
		intermolecular forces of attraction between the molecules increase. The	
		particles lose the ability to move freely and now vibrate about their fixed	
		positions.	
	b	Total energy removed $= mc\Delta\theta + ml_f$	1
		=(400)(4.2)(20 - 0) + (400)(330)	1
		= 33600 + 132000	1
		= <u>166 000 J</u> (3 s.f.)	
	с	The air around the freezing compartment <i>contracts</i> as it cools, becomes	1
		denser and sinks.	
		Warmer, less dense air at the bottom will rise to the top, and be cooled by	1
		the freezing compartment.	
		This forms convection currents.	1
		[Note: It is wrong to state that 'the cooler, denser air is warmed at the	
		bottom and expands'.]	
6	a	Critical angle is the angle of incidence in the optically denser medium, for	1
		which the angle of refraction in the optically less dense medium is 90°.	
	b		2
		light bends away from the normal light travels along the	
		water-air boundary air	
		XXXXY	
		49° water	
	\mathbf{N}	2.0m	
		-t Jamp	
		Within the simple area the second structure in the second structure is the sec	1
	C1	within the circular area, the angle of incidence is less than the critical angle and light roug will be refronted into the sign	1
		and right rays will be refracted into the air.	1
		Outside the circular area, the angle of incidence is greater than the critical	1
		angle and light rays will undergo total internal reflection, reflecting totally	
		As light travels in all directions, the refrected light rave will thus emperate	
		As fight davers in an unections, the refracted fight rays will thus appear to	

	cii	radius Y $\tan 49^\circ = \frac{r}{2}$	1
		r $= 2^{2} \times \tan 49^{\circ} = 2.30 \text{ m} (3 \text{ s.f.})$	1
		49°	
		2.0 49° 7	
		lamp	
7	а	Light-dependent resistor (LDR)	1
	b	$R_{total} = (\frac{1}{R} + \frac{1}{R})^{-1}$	
		$ \begin{pmatrix} K_1 & K_2 \\ -(1 + 1)^{-1} + (1 + 1)^{-1} \end{pmatrix} $	
		$-\left(\frac{60}{60}+\frac{1}{30}\right)^{-1}+\left(\frac{1}{80}+\frac{1}{80}\right)^{-1}$	2
	ci	$= 20 + 40 = \underline{00.02}$ Current is the rate of flow of electric charges passing a point in the circuit	1
	cii	When the light intensity increases, the resistance of the LDR decreases	1
	V 11	This reduces the overall resistance of the circuit $(I - V)$ and hence the	1
		current in the battery increases	
8	ai	Efficiency is the ratio of useful <i>power</i> output to total <i>power</i> input	1
Ŭ	ui	[Or: - Ratio of useful <i>energy</i> output to total <i>energy</i> input.	-
		- Ratio of useful <i>work done</i> to total <i>work done</i> .]	
	aii	Filament lamp: Output power $=\frac{9}{100} \times 40 = 3.60$ W	1
		Fluorescent lamp: Output power = $\frac{40}{100} \times 10 = 4.00 \text{ W}$	
		<u>Fluorescent lamp</u> produces greater useful output power.	
	aiii	Energy savings = $(No. of kW)(No. of h)$	
		$=(\frac{40}{1000})(600)-(\frac{10}{1000})(600)$	1
		= 18 kWh	1
		Cost savings $= 18 \times \$0.25 = \4.50	1
	bi	Infra-red radiation	1
	bii	According to Fig. 8.2, at point P where most energy is emitted, it is in the	1
	h:::	Infra-red region and is radiated as thermal energy.	1
	0111 *	USHIG FIG. 6.1: With 96% of the radiation transmitted, the efficiency of the filament lamp	1
	5	is only 9%.	
	\mathbf{C}	Even if 100% of the radiation is transmitted, the efficiency of the filament	
		lamp is not likely to increase much and is still much lower than the 40%	
		efficiency of the flouroscent lamp.	
		Nota	
		$\frac{11000}{96\%}$ of radiation transmitted $\rightarrow 9\%$ efficiency	
		100% of radiation transmitted $\rightarrow 0\% \times \frac{100}{2} \approx 0.4\%$ efficiency $< 40\%$	
0		The mind marks he shed he high $= 1.11$	1
9	a	 The wind may be blocked by high-rise buildings. There is not enough land in Singapora for the wind turbings. 	1 Any
		 There is not enough rand in Singapore for the wind turbilles. The wind strength may not be consistent 	one
		The wind stronger may not be consistent.	

	bi	For wind speed between 0 and 5 m s ⁻¹ , there is no power output.							
		For wind speed between 5 - 15 m s ⁻¹ , power output increases uniformly							
		from 0 - 0.6 MW.							
		For wind speed above 15 m s^{-1} , power output is constant at 0.6 MW. 1							
	bii	There is only power output for wind speeds $\geq 5 \text{ m s}^{-1}$.							
		time/ wind speed/ power output/ energy generated							
		$\begin{array}{ c c c c c }\hline min & m s^{-1} & MW & (in 1 min) /J \end{array}$							
		2	16	0.6	$E = Pt = (0.6 \times 10^6)(60) =$				
					$3.60 \times 10^7 \text{ J}$				
		3	16	0.6	$3.60 \times 10^7 \text{ J}$				
		6	20	0.6	$3.60 \times 10^7 \text{ J}$				
		7	22	0.6	$3.60 \times 10^7 \text{ J}$				
		8	10	0.3	$1.80 imes 10^7 \mathrm{J}$				
		9	10	0.3	$1.80 \times 10^7 \mathrm{J}$				
				Total	1.80×10^8 J (3 s.f.)				
	biii	The wir	nd speed may n	ot be constant fo	r each 1 minute interval.	1			
		[<u>Note</u> :]	The power out	put values given	in the question already account for				
		inefficie	ency of the tu	urbine. Answers	which merely described how the				
		turbine	wastes energy	are not accepted.					
	с	Use step	p-up transform	ers to increase th	e voltage (at the wind turbines).	1			
		This rec	luces the curre	nt ($P = IV$) and the theorem of the tensor of tensor	nus reduces power losses in the cable	1			
10		$(P_{loss}=I^2)$	R).	0.5.11.0		1			
10	а	P must be greater than 0.5 N for a resultant force to accelerate the bag from 1							
	1.	rest.							
	D1	F = ma When $P = 2.00 \text{ N}$ and $a = 1.250 \text{ m} \text{ s}^{-2}$							
	D11	when P	= 3.00 N, a =	1.250 m s ⁻²		1			
		Frequitant = ma							
		Γ resultant	$- \ln a$	250)					
		3.00 - 0 2.50	-m(1.2)	250)					
		2.30 m	= 11(1.2) = 2.001	(3 sf)		1			
	ci	When $P = 2.00 \text{ N}$, $a = 0.750 \text{ m s}^{-2}$							
	C1	$a = \frac{v - u}{v}$							
	5	$a = \frac{t}{t}$				1			
		$\mathbf{v} = \mathbf{u} + \mathbf{v}$	at $= 0 + (0)$).75)(3.0)		1			
			= 2.25 I	$\underline{m s^{-1}} (3 s.f.)$					
	cli	when P	1s reduced to	J.5 N, the forces	are balanced, so there is no resultant	1			
		force acting on the object.							
		Using I	Newton's First $(af 2) 251$	Law of Motion	n, me dag will travel at a constant	1			
	A	The set	$(01 2.25 \text{ m s}^2)$).	force enting on the student by the	1			
	u	school ¹	ion-reaction pa	an is the putting	g force acting on the student by the	I			
		It acts to	ug. the left and is	equal to the may	antitude of P	1			
		[Note: 7	The air resistar	ice, weight or no	ormal contact force are not the other	T			
		part of t	he action-react	ion pair.	sinal contact force are not the other				
		r ^{mi} t of t		Parr.1					

11	ai	E.m.f is the work done by a power source to drive a <i>unit</i> charge <i>around a</i>	1
E		complete circuit.	1
	an	P.d. is the work done to drive a <i>unit</i> charge <i>between two points/ across an</i>	1
		Or: P.d. is the amount of energy converted from electrical to other forms	
		when a <i>unit</i> charge passes between two points/ across an electrical	
		component in a circuit]	
	bi	P d across $R_1 = 9.0 - 2.6 V = 6.4 V (1 d n)$	1
	bii	$\frac{V}{V} = \frac{V}{V}$	1
	1	Current III $K_1 = \frac{1}{1}$	
		$= 6.4 \div 500$	1
		= 0.0128	1
		= <u>12.8 mA</u> (3 s.f.)	
	h::	Current in $D_{1} = 12.9 + 1.0 = 11.9 \text{ mA}(2.5 \text{ f})$	1
	011 2	Current in $R_2 = 12.8 - 1.0 = 11.8 \text{ mA} (3 \text{ s.i.})$	1
	_∠ bii	$\mathbf{P} = \begin{pmatrix} \mathbf{V} & 2 \\ \mathbf{C} \\ \mathbf{V} & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	1
	3	$R_2 = \frac{1}{I} = 2.6 \div 0.0118 = 220 \Omega (3 \text{ s.t.})$	1
	ci	With a higher resistance, the current is lower.	1
	cii	Increase resistance of R_2 (potential divider).	1
	ciii	When R ₁ has a resistance of 6000 Ω , the current through it is $\frac{V}{R} = \frac{6000}{64} =$	1
	*	1.07 mA. It is then likely that the current passing through the electronic	
		device would be less than the 1.0 mA needed (for it to function).	
		[Note:	
		- A common mistake was to suggest that a high resistance would cause fire	
		or overheating, despite having calculated a very low value of 13 mA for the	
		current.	
		- It is also wrong to state that there is no current or voltage if the resistance	
		exceeds 6000Ω .]	
11	ai	$\mathbf{v} = \mathbf{f} \boldsymbol{\lambda}$	
0		$\lambda \qquad = \frac{v}{f} = 330 \div 220$	1
		= 1.5 m	1
		Number of vibrations = $21 \div 1.5 = \underline{14}$ (whole number)	1
		[Or:	
C	\square	$v = \frac{\Delta s}{L}$ $\Rightarrow t = \frac{\Delta s}{L} = \frac{21}{220} = 0.06364 = 0.0636 s$	
		t V 330	
		220 Hz \Rightarrow 220 vibrations per s	
		$\Rightarrow 0.06364 \text{ s} \rightarrow 220 \times 0.06364 = 14 \text{ vibrations}$	
	aii	(Question states ' using ideas about the vibrations of molecules in the	1
	1	air')	
		A frequency of 220 Hz means that the air molecules complete 220	
		oscillations/ vibrations per second.	
	aii	A lower amplitude means that the the maximum displacement of the air	1
	2	molecules from their undisturbed positions is reduced.	

