

Paya Lebar Methodist Girls' School (Secondary) Preliminary Examination 2024 Secondary 4 Express / G3

	S					
NOMBER				NUMBER		

CHEMISTRY

Paper 2

6092/02 14 August 2024 1 hour 45 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name and index number on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions. Write your answers in the spaces provided.

Section B

Answer **one** question. Write your answers in the spaces provided.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 27.

The use of an approved scientific calculator is expected, where appropriate.

For Examiner's Use			
Section A /70			
Section B /10			
Total	/80		

This document consists of 27 printed pages.

Section A

Answer all questions.

1. Barium hydroxide, Ba(OH)₂ is a strong base.

Fig 1.1 shows a reaction scheme involving barium hydroxide.

Fig. 1.1

(a)	State what is observed in reaction 1.
	[,]
(b)	Suggest a reactant for reaction 2.
	[1]
(c)	Identify A.
	[1]
(d)	Ba(OH) $_2$ is made by reaction of Ba with water. Write a balanced chemical equation
	for this reaction.
	[1]

- (e) The mineral barytocalcite contains both BaCO₃ and CaCO₃. Both compounds decompose on heating.
 - Using your knowledge on the reactivity of metals, predict which compound decomposes first when barytocalcite is heated.
 Explain your answer.

[2]

(ii) Construct an equation for the complete thermal decomposition of barium carbonate.

 	[1]
	[Total: 7]

 The elements phosphorus, sulfur and chlorine are elements in Period 3 of the Periodic Table.

Table 2.1 shows some properties of these three elements.

property	Р	S	Cl
number of valence	5	6	7
electrons			
formula of most	P ³⁻	S ²⁻	C <i>l</i> -
common ion			

Table 2.1

(a) P^{3-} , S^{2-} and Cl^{-} have the same number of electrons.

Describe and explain the trend in ionic radius shown by P^{3-} , S^{2-} and Cl^{-} .

 (b) Chlorine forms various ions with different oxidation states. Table 2.2 shows some of the ions of chlorine.

lon	chlorate	perchlorate	hypochlorite	chloride
formula	ClO ₃ -	ClO4 ⁻	ClO ⁻	C <i>l</i> -
oxidation state				
of chlorine				

Table 2.2

- (i) Fill in Table 2.2 with the oxidation state of the chlorine in the various ions. [2]
- (ii) A disproportionation reaction is a reaction where an element is both reduced and oxidised at the same time.

Potassium chlorate, KC/O₃ decomposes according to equation below.

 $4KC{\it l}O_3 \ \rightarrow \ 3KC{\it l}O_4 \ \ + \ \ KC{\it l}$

Explain why the above reaction is a disproportionation reaction.

[2]

(c) A student does two tests on separate samples of NaC*l*(aq).

Complete Table 2.3 with the correct observations for each test.

test	observation
addition of a few drops of	
Br₂(aq)	
addition of a few drops of	
AgNO ₃ (aq)	

[2]

Table 2.3

[Total: 8]

- **3.** POC l_3 has a melting point of 1°C and a boiling point of 106°C.
 - (a) Based on the information provided, suggest the structure and bonding in POC*l*₃.
 - (b) Phosphorus shares a double bond with oxygen. Draw the 'dot and cross' diagram to show the bonding in POC*l*₃. Show only the outermost electrons.

(c) $POCl_3(g)$ forms when $PCl_3(g)$ reacts with $O_2(g)$.

 $2PCl_3(g) + O_2(g) \rightarrow 2POCl_3(g)$

Table 3.1 shows some relevant information on energy changes.

Process	value/ kJ mol ⁻¹
enthalpy change for breaking bonds in one mole of PCl ₃	+289
enthalpy change for forming bonds in one mole of POCl ₃	-592
$O_2(g) ightarrow 2O(g)$	+496

Table 3.1

Calculate the enthalpy change, ΔH , for the reaction shown in the equation in **(c)**.

enthalpy change = kJ [2]

(d) Hence, draw the energy profile diagram in Fig. 3.1 for the reaction shown in (c). Indicate clearly the **value** of the activation energy and enthalpy change on Fig. 3.1.

Fig. 3.1

[3] [Total: 8]

- **4.** Concentrated aqueous magnesium iodide and molten magnesium iodide are electrolysed separately using graphite electrodes.
 - (a) Describe one similarity and one difference in terms of the products formed at the electrodes for the different electrolytes.

One difference:	 		
			[4]
••••••	 	••••••	 ····· [']

(b) Describe and explain what is observed when aqueous chlorine is bubbled into aqueous magnesium iodide.

(c) lodide ions react with manganese (IV) oxide as shown in the equation.

$\rm 2I^- \ + \ MnO_2 \ + \ 4H^+ \ \rightarrow \ Mn^{2+} \ + \ I_2 \ + \ 2H_2O$

Explain the role played by the iodide ions in the reaction, in terms of oxidation state.

- (d) lodine has several radioactive isotopes. Two of the isotopes, iodine-131 and iodine-123 has clinical usage. Tiny amounts of radiation that are emitted by the radioactive iodine isotopes help the doctor to see how the organ is functioning or to treat certain cancers. Radiation emitted can be in the form of a beta particle, $_{-1}^{0}\beta$.
 - (i) Explain whether iodine-131 and iodine-123 will have similar chemical properties.

.....[1]

(ii) The equation below shows iodine-131 breaking down to produce a beta particle.

 $^{131}_{53}I \rightarrow ^{131}_{54}Xe$ + $^{0}_{-1}\beta$

Radioactive phosphorus-32 also breaks down to produce a beta particle, similar to radioactive iodine-131. Write an equation to show this reaction.

.....[1] [Total: 8] 5. A piece of copper ore containing copper (II) oxide has a mass of 0.567g. It is dissolved in an acid, giving 100.0 cm³ of a blue solution in which all the copper is present as Cu²⁺ ions.

An excess of KI (aq) is added to a **25.0 cm³ sample** of this solution. All the copper is precipitated as white CuI(s).

Cu²⁺ ions are the only component in the solution that react with KI (aq). This is reaction 1.

reaction 1 $2Cu^{2+} + 4I^- \rightarrow 2CuI + I_2$

The liberated iodine is then titrated with 0.0200 mol/dm³ of $S_2O_3^{2-}$. This is reaction 2.

reaction 2 $I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$

The titration requires 20.10 cm³ of 0.0200 mol/dm³ of $S_2O_3^{2-}$ to reach the end point.

(a) Calculate the number of moles of I_2 that are reduced in the titration.

number of moles of I_2 = mol [1]

(b) Calculate the number of moles of copper in the **original** piece of ore.

number of moles of copper in the original piece of ore = mol [2]

(c) Calculate the percentage of copper in the ore.

% of copper in the ore = % [2]

(d) Pure copper is usually converted to an alloy before being used to make water pipes. Describe and explain the advantage of using an alloy of copper over pure copper.

[2] [Total: 7] 6. An experiment is set up to investigate the rate of diffusion of solutions. Aqueous barium nitrate is added from one side of a 10 cm length of black paper, while aqueous copper (II) sulfate is added from the other side at the same time. The time taken for a white precipitate to appear on the black paper is recorded. Fig. 6.1 shows the experimental set up.

Fig. 6.1

(a) Write the ionic equation for the formation of the white precipitate.

[1]

(b) Predict the position of the white precipitate on the black paper. Will the white precipitate appear at position marked X, Y or Z? Provide an explanation for your answer.

.....[2]

 (d) Copper (II) sulfate is made by adding excess copper (II) carbonate to sulfuric acid, at room temperature and pressure.

The equation for reaction is shown below.

$$CuCO_3$$
 (s) + H_2SO_4 (aq) \rightarrow $CuSO_4$ (aq) + CO_2 (g) + H_2O (l)

The volume of gas collected as the reaction proceeds in shown in Fig. 6.2.

Fig. 6.2

number of moles of sulfuric acid = mol [2]

(ii) If the concentration of sulfuric acid used is 0.0500 mol/dm³, calculate the volume of sulfuric acid used.

volume of sulfuric acid = cm³ [1]

(iii) The experiment is repeated with the same volume of sulfuric acid in (ii) but concentration of sulfuric acid is 0.0643 mol/dm³, and all other conditions are kept constant.

Calculate the volume of carbon dioxide produced.

(iv) Use ideas about collisions between particles to explain how the change in concentration of sulfuric acid in (iii) affects the rate of reaction.

(v) Hence, sketch the graph obtained for the experiment in (iii) on Fig. 6.2. [1] [Total: 12] 7. Plastics can be categorised into 7 types. Fig. 7.1 shows three of the most used plastics. The plastics industry depends on non-renewable resources. More than 90% of global plastic production consists of primary plastics—which are newly manufactured, rather than recycled—made from petroleum products. This production requires a huge amount of energy and produces greenhouse-gas emissions. By 2050, emissions from plastic production could amount to 15% of the estimated carbon budget needed to keep global warming below 1.5 °C.

Credits: https://www.scientificamerican.com/article/why-its-so-hard-to-recycle-plastic/

type of plastic	name	ease of recycling
PET	polyethylene terephthalate	easy
HDPE	high density polyethylene	easy
23 PVC	polyvinyl chloride	almost impossible

Fig. 7.1

(a) Explain why the production of plastic is not environmentally sustainable and harmful to the environment.

(b) PET and HDPE are easy to recycle. Describe how plastics can be recycled using a physical and chemical method. Physical method:

 [1]

 Chemical method:

(c) The structure of PET and PVC are shown in Fig. 7.2

Fig. 7.2

(i) Draw the monomer(s) that are used to make PET and PVC.

Monomers of PET	Monomer of PVC
	[2]

(ii) PET and PVC are made by different methods of polymerisation.	
Identify the polymer formed by:	
addition polymerisation :	
condensation polymerisation:	[1]
(iii) Describe one difference between addition and condensation polymerisation.	
	[1]

[Total: 8]

8. Infrared spectroscopy can be used to detect bonds and atoms present in organic molecules. As the bonds and types of atoms differ, the molecules absorb radiation at different wavelengths, represented by a wavenumber. As the bonds absorb radiation, they stretch. Table 8.1 shows the wavenumber at which the different bonds absorb radiation.

Bond	Wavenumber/ cm ⁻¹
C-C	1100 - 750
C-0	1300 - 1000
C=C	1680 – 1650
C=O	1725 – 1700
C-H	2990 – 2600
O-H (in carboxylic acids)	3200 - 2900
O-H (in alcohols)	3700 - 3300

Table 8.1

Fig. 8.1 shows the infrared spectrum of ethanol. In an infrared spectrum, the vertical axis shows an increasing transmittance while the horizontal axis shows a **decreasing** wavenumber.

Fig. 8.1

A peak at 3391 cm⁻¹ corresponds to a O-H bond as it falls in the region of $3700-3300 \text{ cm}^{-1}$.

A peak at 2981 cm⁻¹ corresponds to a C-H bond as it falls in the region of 2990- 2850 cm⁻¹.

A peak at 1102 and 1055 cm⁻¹ corresponds to a C-O bond as it falls in the region of 1300- 1000 cm⁻¹.

Alcohols fall into different classes depending on how the hydroxyl group, -O-H is positioned on the chain of carbon atoms. Table 8.2 shows the differences between the different classes of alcohol for butanol.

Primary (1 ⁰)	Secondary (2 ⁰)	Tertiary (3 ⁰)
H H H H H H H H H	Н Н Н Н H—С—С—С—С—Н H ОН Н Н	H H H H C H H C H H H H H H H H H H H H
butan-1-ol	butan-2-ol	2-methylpropan-2-ol
In a primary (1 ⁰) alcohol , the carbon which carries the -OH group is attached to only one <i>alkyl</i> group.	In a secondary (2 ⁰) alcohol , the carbon which carries the -OH group is attached to two <i>alkyl</i> groups, which may be same or different.	In a tertiary (3 ⁰) alcohol , the carbon which carries the -OH group is attached to three <i>alkyl</i> groups, which may be same or different.

Table 8.2

An *alkyl* group is a group such as methyl, $-CH_3$, or ethyl, $-CH_3CH_2$. These are groups containing chains of carbon atoms which may be straight or branched. Alkyl groups are given the general symbol **R**.

Alcohols have a higher boiling point than that of an alkane with the same number of carbon atoms as shown in Fig. 8.2 due to the presence of hydrogen bonding. Hydrogen bonding occurs in molecules due to the hydroxyl functional group, -O-H. The weak intermolecular forces of attraction between the molecules and hydrogen bonding determine the boiling point of an alcohol.

Fig. 8.2

- (a) What is the phenomenon exhibited by the three different molecules of butanol shown in Table 8.2?
 -[1]
- (b) Table 8.3 shows three alcohols P, Q and R.

Alcohol	Р	Q	R
Structural formula	H H H OH H H-C-C-C-C-C-H H H H H H	H H H H C H H C H H H C H H H C H H H H	H H H H H C C C C C C H H H H H H H H H
Class of alcohol			
Name		2-methylpropan-1-ol	2-methylbutan-2-ol

Table 8.3

Fill in the missing blanks in Table 8.3 with the correct class and name of the alcohols **P**, **Q** and **R**. [2]

(c) A molecule T, with two hydroxyl groups has the structure shown in Fig. 8.3.

Fig 8.3

Using information from Fig 8.2, predict the boiling point of molecule **T**. Provide an explanation for your prediction.

[3]

NIST Chemistry WebBook (https://webbook.nist.gov/chemistry)

Fig. 8.4

(i) Based on Fig 8.4 and Table 8.1, identify the bonds represented by the peaks at V, W, X and Y. Bonds represented by X and Y make up the only functional group of molecule Z. V represents bond: W represents bond: X represents bond: (ii) State the homologous series molecule Z is in. (iii) Molecule Z has a total of two carbon atoms. Hence, draw the displayed formula of molecule Z.

[2] e Z .	(iv) Name the reagents that can react to produce r
[1]	
[Total: 12]	
	21

[Turn Over

Section B

Answer **one** question from this section.

9. Table 9.1 shows the melting points and relative electrical conductivities of three elements.

	carbon (graphite)	magnesium	iodine
melting point/ ⁰ C	3652	649	114
relative electrical conductivity of solid	good	good	poor

Table 9.1

- (a) Use ideas about bonding and structure to explain:
 - (i) the difference in the melting points of magnesium and iodine.

 [3]

(ii) the difference in the electrical conductivities of graphite and iodine.

[2]

(b) A compound of phosphorus, oxygen and chlorine contains 20.2% phosphorus, 10.4% oxygen and 69.4% chlorine by mass.Deduce the empirical formula of this compound.

empirical formula[2]

(c) The cell reaction for an electrochemical cell is shown below.

 Cl_2 (aq) + 2Fe²⁺ (aq) \rightarrow 2Fe³⁺ (aq) + 2Cl⁻ (aq)

Table 9.2 shows some standard electrode potentials.

Half - reaction	Standard Electrode Potential, E° (volts)
$2Fe^{3+}$ (aq) + $2e^{-} \rightarrow 2Fe^{2+}$ (aq)	+ 0.77
Cl_2 (aq) + 2e ⁻ \rightarrow 2Cl ⁻ (aq)	+ 1.36

Table 9.2

(i) Use the information in Table 9.2 to calculate the potential difference of the electrochemical cell in (c).

potential difference = V [1]

(ii) Describe the colour change of the solution in the electrochemical cell as electricity is being generated.

.....[1]

(iii) Describe a simple test to determine that all the chlorine is fully used up. Aqueous chlorine behaves the same way as chlorine gas.

[1] [Total: 10] **10.** Solid fuel used for outdoor cooking is made of hexamine. A student suggested using moth balls made of naphthalene as solid fuels instead. Table 10.1 shows some information about hexamine and naphthalene.

Solid fuel	Molecular formula	Enthalpy of combustion
		kJ/mol
hexamine	$C_6H_{12}N_4$	-4 200
naphthalene	C ₁₀ H ₈	-5 133

Table 10.1

Energy density is the amount of energy released per gram of fuel combusted, kJ/g.

(a) Calculate the energy densities of hexamine and naphthalene.

energy density of hexamine = kJ/g [1]

energy density of naphthalene =kJ/g [1]

(b) Hence, explain whether moth balls containing naphthalene are a better alternative to solid fuel containing hexamine for camping, with reference to their energy densities and mass.

• •	• •	 • • •		• •	• •	••	••	• •	• • •	• •	• •	••	• •	• •	• •	• •	•••	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	•	• •	• •	• •	••	•••	••	• •	••	••	• •	••	• •	• •	•••	• •		• • •	• •		••	••	••	•••	•••	• •	• •	•
	• •	 • •				••	••		•••	••	• •	••		• •	• •	• •	•••	••	•••	• •		• •	• •	• •			• •	•	•••		••	• •	• •	••	• •	••	••	• •	••			•••			• • •	• •	•••	••	••	••			• •	•••	•
•••	• •	 • • •	•••	•••		•••	•••	•••	•••	• •	• •	•••	•••	• •	•••	• •	•••	• •	•••	•••	• •	• •	• •	• •	•••	• •	• •	•	•••	•••	•••	•••	•••	•••	•••	•••	••	•••	•••	•••	•••	•••	•••	•••	• • •	•••	•••	•••	•••	•••		•••	•••	[1]

(c) Burning hexamine solid fuels may be more harmful than burning moth balls as a harmful air pollutant is produced. Name the air pollutant produced and describe the harmful effect caused by this air pollutant.

(d) Aluminium nitrate decomposes on heating according to the equation below.

 $4Al(NO_3)_3$ (s) $\rightarrow 2Al_2O_3$ (s) + 12NO₂ (g) + 3O₂ (g)

Student A then adds aqueous hydrochloric acid while student B adds aqueous potassium hydroxide to the solid left after decomposition.

- (i) Describe what will be observed by:
 Student A
 Student B
 [1]
 Explanation for observations:
 [1]
- (ii) Use ideas of structure and bonding to explain why aluminium oxide exists as a solid while nitrogen dioxide exists as a gas at room conditions.

[3] [Total: 10]

END OF PAPER

The Periodic Table of Elements

								Gr	oup								
1	2											13	14	15	16	17	18
		Image: Meg 1 Key 1															2 He ^{helium} 4
3	4		proton	(atomic) n	umber			-				5	6	7	8	9	10
Li	Be		ate	omic symt	bol							В	С	N	0	F	Ne
lithium	beryllium		roloti	name	~~~~							boron	carbon	nitrogen	oxygen	fluorine	neon
11	9		relati	ve atomic i	nass							12	12	14	16	19	20
No	Ma											13	14 Ci		10		10 Ar
sodium	IVIG											A <i>l</i> aluminium	Silicon	F phosphorus	Sulfur		Al
23	24	3	4	5	6	7	8	9	10	11	12	27	28	31	32	35.5	40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
85	88	89	91	93	96	-	101	103	106	108	112	115	119	122	128	127	131
55	56	57-71	/2	73 	74	75	76	(/	78 Di	79	80	81	82	83	84	85	86
Cs	Ba	lantnanolds	Ht	la	VV	Re	Os	Ir	Pt	Au	Hg		Pb	BI	Po	At	Rn
caesium 133	barium 137		natnium 178	tantalum	tungsten	rnenium 186			platinum 105	gold 107	mercury 201	thallium	1ead		polonium	astatine	radon
133	137	00 400	170	101	104	100	190	192	195	137	201	204	207	203	-	-	-
8/ 5-	88	89–103 actinoida	104	105	106		108	109	110 De	111 De	112 Cm	113		115 Ma	110	117 Te	0~
francium	Ra	actinoius	KI ruthorfordium	DD	Sg	Bn	HS	IVIL	DS darmetadtium	Rg	Cn	INN	florovium	IVIC	LV	I S toppossino	Og
	-		-		–	_		–	uamstautium —	–	–	-	-		—		–
		57	EQ	50	60	61	60	62	64	65	66	67	60	60	70	71	1
		57		Dr	Nd	Dm	02 Sm	- 03 Eu	Cd	05 Th		07 Ho	00 Er	Tm	70 Vh		
lantha	anoids	La	CE	r I praseodymium	neodymium	r III promethium	samarium	europium	gadolinium	terhium	dysprosium	holmium	erbium	thulium	vtterbium		
		139	140	141	144		150	152	157	159	163	165	167	169	173	175	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
	aida	Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
actir	IOIOS	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	
		-	232	231	238	-	-	-	-	-	-	-	-	-	-	-	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$