## **Mole Concept**

# Content \*\*\*



### Formula List for Mole Concept

| Name                         | Formula                                                                                                                                              |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of moles              | Mass of substance (g)                                                                                                                                |
|                              | Molar Mass of subtance                                                                                                                               |
| Percentage                   | Number of atoms ×Atomic Mass of element x 100%                                                                                                       |
| Composition                  | Molar mass of compound                                                                                                                               |
| Number of moles (gases       | Volume of gas                                                                                                                                        |
| at r.t.p)                    | $\overline{24dm^3}$                                                                                                                                  |
| Concentration $(g/dm^3)$     | Mass of substance                                                                                                                                    |
|                              | <u>Volume</u>                                                                                                                                        |
| Concentration ( $mol/dm^3$ ) | $\frac{\textit{Mass of substance}}{\textit{Volume}} \div \text{Molar Mass of solute OR } \frac{\textit{Number of moles of solute}}{\textit{Volume}}$ |
| Percentage Purity            | Calculated mass of substance in sample x 100%                                                                                                        |
|                              |                                                                                                                                                      |
| Percentage Yield             | mass of sample  mass of substance obtained  Theoretical mass yield x 100%                                                                            |
|                              | Theoretical mass yield                                                                                                                               |
| 1 mol of substance           | 6 x 10 <sup>23</sup> particles                                                                                                                       |

### Test yourself



- 1. Define Relative Atomic Mass
- 2. Define Relative Molecular/Formula Mass
- 3. State the formula to find
  - Number of moles
  - ii. Percentage Composition
  - iii. Number of moles (gases at r.t.p)
  - Concentration  $g/dm^3$ iv.
  - Concentration  $mol/dm^3$ ٧.
  - Percentage Purity vi.
  - Percentage Yield vii.
  - viii. 1 mol of substance
- 4. At r.t.p, Mole ratio = \_\_\_\_\_?

#### **Glossary of Terms**

| Relative Atomic<br>Mass | The average mass of one atom of an element as compared to 1/12 of the mass of one Carbon-12 atom                 |
|-------------------------|------------------------------------------------------------------------------------------------------------------|
| Relative<br>Molecular   | The average mass of one molecule of an element or compound as compared to 1/12 of the mass of one Carbon-12 atom |
| Mass                    |                                                                                                                  |