Class	Adm	No	

Candidata	Namai		
Candidate	mame:		

2020 Preliminary Exams

Pre-University 3

H2 CHEMISTRY 9729/02

Paper 2 Structured Questions

14 Sep 2020

2 hours

Candidates answer on the Question paper.

Additional materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Do not turn over this question paper until you are told to do so

Write your name, class and admission number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

The use of an approved scientific calculator is expected, where appropriate.

A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Question	1	2	3	4	5	Total
Marks	11	23	15	15	11	75

Answer all questions in the spaces provided.

1	(a)	Des	scribe the structure of a ³¹ P atom, in terms of the number and type of subatomic particles.	For Examiner's use
			[1]	
		The	ere are 15 electrons, 15 protons and 16 neutrons.;	
	(b)	Sta	te and explain how the atomic radius and anionic radius of phosphorus differ.	
		ren	e number of protons in both the atom and anion are the same, hence nuclear charge nains the same. When it gains electrons the inter-electron repulsion is increased as there more electrons. Hence the anionic radius is larger than the atomic radius.	
			[1]	
	(c)	(i)	Solid PC <i>l</i> ₅ can be prepared by the chlorination of liquid PC <i>l</i> ₃ . Write an equation, with state symbols, to represent this chlorination.	
			$\frac{PCl_3(l) + Cl_2(g) \longrightarrow PCl_5(s)}{PCl_3(l) + Cl_2(l) \longrightarrow PCl_5(l)}$	
			[1]	
		(ii)	By means of an energy cycle and the information given below, calculate the standard enthalpy change of chlorination of PCl_5 .	
			$P(s) + \frac{3}{2}Cl_2(g) \longrightarrow PCl_3(l) \qquad \Delta H = -339 \text{ kJ mol}^{-1}$	
			$2P(s) + 5Cl_2(g) \longrightarrow 2PCl_5(s)$ $\Delta H = -926 \text{ kJ mol}^{-1}$	
			enumy $ Sm^{-1} = \frac{\sum_{i=1}^{N} (i_{2}(9))}{\sum_{i=1}^{N} (i_{3}(1) + (i_{2}(9))} = \frac{26\times\frac{1}{2}}{\sum_{i=1}^{N} (i_{3}(1) + (i_{$	
			1m for Hess' law calculations [3]	

((iii)	Write an equation, including state symbols to illustrate the reaction of PCl ₅ with water.					For Examiner's
		Suggest the approxima	te pH of the sol	ution formed.			use
		PC l_5 (s)+ 4H ₂ O (l) \rightarrow H ₃ PO ₄ (aq) + 5HC l (aq) ; pH = 2.0 ; Also accepted: PC l_3 (s)+ H ₂ O (l) \rightarrow POC l_3 (aq) + HC l (aq) ;					
						[2]	
(d)		/₅ reacts with hydrazine, I	_		ound X with com	position by mass	
	sho	wn below and a molecul		03.0. o ; N, 9.2%; C <i>l</i> , ⁻	70.3%		
	(i)	Calculate the empirical	formula of X an	d hence, state i	ts molecular for	mula.	
		,	Р	N	C1		
		mass / g	20.5	9.2	70.3 70.3 / 35.5 =		
		Amount / mol	20.5 / 31 = 0.661	9.2 / 14.0 = 0.657	1.98		
		simplest mole ratio	1	1	3		
		Empirical formula: PNC Molecular formula: P2N					
						[2]	
	(ii)	Given that X contains a	N–N single bor	nd, suggest the	structure of X.		
		$ \begin{array}{c c} Cl & Cl \\ Cl & N & N & Cl \\ Cl & Cl & Or \end{array} $	C1 / P / C1	N-N-P-C1			
		•				[1]	
						[Total: 11]	

Volcanoes can contribute to air pollution through the release of toxic gases when volcanoes erupt. The most abundant volcanic gas is water vapour. However, significant amounts of carbon dioxide, sulfur dioxide, hydrogen sulfide and hydrogen halides are also emitted.

For Examiner's

Table 1: Volcanic gas composition in town A

Gas	Volume Percentage
Water vapour, H₂O	87.1
Carbon dioxide, CO ₂	unknown
Sulfur dioxide, SO ₂	0.5
Hydrogen, H ₂	0.7
Carbon monoxide, CO	0.01
Hydrogen sulfide, H₂S	0.23
Hydrogen halides	unknown

The composition of the volcanic gases are expressed in terms of volume percentage, which can be calculated using the formula below.

volume percentage =
$$\frac{\text{volume of gas}}{\text{total volume}} \times 100\%$$

(a)	When carbon dioxide is emitted from volcanoes, it becomes diluted to low concentrations quickly and is not a harmful gas. However, the carbon dioxide gas when cooled, can flow into low-lying areas where it can reach higher concentrations.	
	(i) Suggest why at low temperatures, carbon dioxide would accumulate to high concentrations. Explain your answer.	
	[2]	
	At low temperatures, there is insufficient energy to overcome the strong instantaneous dipole-induced dipole (id-id) interactions between CO ₂ molecules.; Hence, there are more CO ₂ molecules in a given volume leading to high concentrations.;	
	People living in town A had to be evacuated as the levels of carbon dioxide gas was increasing rapidly. Breathing air with more than 3% CO ₂ can lead to headaches, increased	

heart rate and difficulty breathing. At about 15%, unconsciousness and death can result.

	(ii)	Given that 0.35 g of CO ₂ was present in 1 dm ³ of gas mixture at r.t.p, determine the	For Examiner						
		volume percentage of carbon dioxide present.	s use						
		Amount of $CO_2 = \frac{0.35}{44.0} = 0.00795 mol$							
	Vol of $CO_2 = 0.00795 (24) = 190.9 \text{ cm}^3$;								
		volume percentage of $CO_2 = (190.9 / 1000) \times 100\% = 19.1\%$;							
		[2]							
	(iii)	Hence, comment on the possible danger if people remained in the town.							
		Unconsciousness and death can result.							
		[1]							
(b)	Fur	ther analysis of the hydrogen halides composition of the volcanic gases revealed that							
(2)		hydrogen halides were mostly made up of HC <i>l</i> (g) and HBr(g).							
	(i)	Table 2: Bond energies of hydrogen halides							
		Bond Bond energy / kJ mol ⁻¹							
		H–C <i>l</i> 432							
		H–Br 366							
		 Thermal stability decreases from HCl(g) > HBr(g) > HI(g) Reducing power increases from HCl(g) < HBr(g) < HI(g) Acid strength increases from HCl(g) < HBr(g) < HI(g) 							
		Any two ;;							
		[2]							
	(ii)	Explain why HBr(g) deviates more from ideality as compared to HCl(g).							
		[4]							
		[1]							
		The permanent dipole-permanent dipole forces of attraction between HBr molecules							
	(iii)	The permanent dipole-permanent dipole forces of attraction between HBr molecules							

		Draw the displayed formula of both the major and minor products of the reaction of	
		HCl(g) with 2-methylbut-2-ene. Label the major and minor products clearly.	
		H-C-H	For Examiner' use
		[2]	
(c)	And	other volcanic gas, sulfur dioxide, also has harmful effects on human health.	
	(i)	Draw the 'dot-and-cross' diagram of one molecule of SO ₂ and state its bond angle.	
		, , , , , , , , , , , , , , , , , , ,	
		[2]	
	(ii)	SO_2 can be converted SO_3 in the presence of atmospheric oxygen. By using appropriate values from the data booklet, write an equation for the conversion of SO_2 to SO_3 and calculate the enthalpy change of this reaction.	
		$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g) ;$	
		$\Delta H = [(2x2x500) + 496] - (2x3x500) = -504 \text{ kJ mol}^{-1};$	
		(also accept ½(-504) depending on the equation that students have written)	
		[3]	
	(iii)	SO ₂ can be used to produce H ₂ SO ₄ in a multi-step reaction. In one such reaction,	
		100 cm ³ of H ₂ SO ₄ was produced. The H ₂ SO ₄ produced was tested for its concentration	
		where 25.0 cm ³ of the resultant solution required 23.50 cm ³ of 2.00 mol dm ⁻³ NaOH for	
		complete titration.	
		Calculate the amount of H ₂ SO ₄ produced in the method above.	
		No. of moles of NaOH = $(23.50/1000) \times 2 = 0.047$	
		No. of moles of H_2SO_4 (25 cm ³) = 0.047 / 2 = 0.0235 ; No. of moles of H_2SO_4 (100 cm ³) = 0.0235 x 4 = 0.094 ;	
		[2]	

(i) Explain the Chemistry behind why this method is possible. Magnesium oxide is basic and can undergo acid-base reaction with acidic sulfur dioxide. [1]	(d)		dent A suggested that o react the gaseous S		ethod to remove harmful SO ₂ um oxide.	from volcanic gases	Exami us
Student B suggested that besides magnesium oxide, other metal oxides like sodium oxide and calcium oxide can also be used to remove sulfur dioxide. (ii) The pH of the resulting solutions when one mole of MgO and Na ₂ O are added to 1 dm³ of water separately are shown in table 3 below. Table 3: pH of metal oxides Metal Oxide pH of resulting solution MgO 9 Na ₂ O 13 CaO ?		(i)	Explain the Chemist	ry behind why thi	s method is possible.		
Student B suggested that besides magnesium oxide, other metal oxides like sodium oxide and calcium oxide can also be used to remove sulfur dioxide. (ii) The pH of the resulting solutions when one mole of MgO and Na ₂ O are added to 1 dm³ of water separately are shown in table 3 below. Table 3: pH of metal oxides Metal Oxide pH of resulting solution MgO 9 Na ₂ O 13 CaO ?			Magnesium oxide is	basic and can und	dergo acid-base reaction with	acidic sulfur dioxide.	
and calcium oxide can also be used to remove sulfur dioxide. (ii) The pH of the resulting solutions when one mole of MgO and Na₂O are added to 1 dm³ of water separately are shown in table 3 below. Table 3: pH of metal oxides Metal Oxide pH of resulting solution MgO 9 Na₂O 13 CaO ?						[1]	
(ii) The pH of the resulting solutions when one mole of MgO and Na₂O are added to 1 dm³ of water separately are shown in table 3 below. Table 3: pH of metal oxides Metal Oxide pH of resulting solution MgO 9 Na₂O 13 CaO ?		Stu	dent B suggested that	at besides magne	sium oxide, other metal oxide	es like sodium oxide	
1 dm³ of water separately are shown in table 3 below. Table 3: pH of metal oxides Metal Oxide pH of resulting solution MgO 9 Na₂O 13 CaO ?		and	l calcium oxide can a	lso be used to rer	move sulfur dioxide.		
Table 3: pH of metal oxides Metal Oxide pH of resulting solution MgO 9 Na₂O 13 CaO ?		(ii)	The pH of the resu	ılting solutions w	hen one mole of MgO and	Na₂O are added to	
Metal Oxide pH of resulting solution MgO 9 Na₂O 13 CaO ? Predict and suggest an explanation for the pH of a solution containing 1 mol dm³ of CaO. pH of MgO < pH of CaO < pH of Na₂O (accept between 9-13); CaO has a lower magnitude of lattice energy than MgO due to a larger cationic radii. Thus, CaO should be more soluble than MgO and so giving a higher concentration of OH⁻ ions when CaO is added to water.; Na₂O is very soluble in water (lowest magnitude of lattice energy), thus it will give the highest concentration of OH⁻ in solution, thus most basic.; Student C suggested that seawater can also be used to absorb and remove SO₂. The main substance in seawater that is responsible for removing SO₂ is the HCO₃ ions. When SO₂ is absorbed in water, the following two equilibria reactions take place: SO₂(g) + H₂O(l) + ½O₂(g) ⇌ SO₄²⁻(aq) + 2H⁺(aq) — (1) HCO₃¬(aq) + H⁺(aq) ⇌ H₂O(l) + CO₂(g) — (2) (from seawater)			1 dm ³ of water sepa	rately are shown	in table 3 below.		
				Table 3	: pH of metal oxides		
Predict and suggest an explanation for the pH of a solution containing 1 mol dm³ of CaO. Phof MgO < pH of CaO < pH of Na₂O (accept between 9-13); CaO has a lower magnitude of lattice energy than MgO due to a larger cationic radii. Thus, CaO should be more soluble than MgO and so giving a higher concentration of OH⁻ ions when CaO is added to water.; Na₂O is very soluble in water (lowest magnitude of lattice energy), thus it will give the highest concentration of OH⁻ in solution, thus most basic.; Student \mathbf{C} suggested that seawater can also be used to absorb and remove SO_2 . The main substance in seawater that is responsible for removing SO_2 is the HCO₃ ions. When SO_2 is absorbed in water, the following two equilibria reactions take place: $SO_2(g) + H_2O(l) + \frac{1}{2}O_2(g) \rightleftharpoons SO_4^{2-}(aq) + 2H^+(aq) - (1)$ $HCO_3^-(aq) + H^+(aq) \rightleftharpoons H_2O(l) + CO_2(g) - (2)$ (from seawater)							
Predict and suggest an explanation for the pH of a solution containing 1 mol dm 3 of CaO			-			_	
1 mol dm 3 of CaO. pH of MgO < pH of CaO < pH of Na $_2$ O (accept between 9-13); CaO has a lower magnitude of lattice energy than MgO due to a larger cationic radii. Thus, CaO should be more soluble than MgO and so giving a higher concentration of OH $^-$ ions when CaO is added to water.; Na $_2$ O is very soluble in water (lowest magnitude of lattice energy), thus it will give the highest concentration of OH $^-$ in solution, thus most basic.; Student C suggested that seawater can also be used to absorb and remove SO $_2$. The main substance in seawater that is responsible for removing SO $_2$ is the HCO $_3$ $^-$ ions. When SO $_2$ is absorbed in water, the following two equilibria reactions take place: SO $_2$ (g) + H $_2$ O(l) + l 2O $_2$ (g) \rightleftharpoons SO $_4$ 2-(aq) + 2H $^+$ (aq) — (1) HCO $_3$ -(aq) + H $^+$ (aq) \rightleftharpoons H $_2$ O(l) + CO $_2$ (g) — (2) (from seawater)						1	
pH of MgO < pH of CaO < pH of Na₂O (accept between 9-13); CaO has a lower magnitude of lattice energy than MgO due to a larger cationic radii. Thus, CaO should be more soluble than MgO and so giving a higher concentration of OH⁻ ions when CaO is added to water.; Na₂O is very soluble in water (lowest magnitude of lattice energy), thus it will give the highest concentration of OH⁻ in solution, thus most basic.; Student C suggested that seawater can also be used to absorb and remove SO₂. The main substance in seawater that is responsible for removing SO₂ is the HCO₃⁻ ions. When SO₂ is absorbed in water, the following two equilibria reactions take place: SO₂(g) + H₂O(l) + ½O₂(g) ⇌ SO₄²⁻(aq) + 2H⁺(aq) — (1) HCO₃⁻(aq) + H⁺(aq) ⇌ H₂O(l) + CO₂(g) — (2) (from seawater)			1 mol dm ⁻³ of CaO.				
pH of MgO < pH of CaO < pH of Na₂O (accept between 9-13); CaO has a lower magnitude of lattice energy than MgO due to a larger cationic radii. Thus, CaO should be more soluble than MgO and so giving a higher concentration of OH⁻ ions when CaO is added to water.; Na₂O is very soluble in water (lowest magnitude of lattice energy), thus it will give the highest concentration of OH⁻ in solution, thus most basic.; Student C suggested that seawater can also be used to absorb and remove SO₂. The main substance in seawater that is responsible for removing SO₂ is the HCO₃⁻ ions. When SO₂ is absorbed in water, the following two equilibria reactions take place: SO₂(g) + H₂O(l) + ½O₂(g) ⇌ SO₄²⁻(aq) + 2H⁺(aq) — (1) HCO₃⁻(aq) + H⁺(aq) ⇌ H₂O(l) + CO₂(g) — (2) (from seawater)							
pH of MgO < pH of CaO < pH of Na ₂ O (accept between 9-13) ; CaO has a lower magnitude of lattice energy than MgO due to a larger cationic radii. Thus, CaO should be more soluble than MgO and so giving a higher concentration of OH ⁻ ions when CaO is added to water. ; Na ₂ O is very soluble in water (lowest magnitude of lattice energy), thus it will give the highest concentration of OH ⁻ in solution, thus most basic. ; Student \mathbf{C} suggested that seawater can also be used to absorb and remove SO ₂ . The main substance in seawater that is responsible for removing SO ₂ is the HCO ₃ ⁻ ions. When SO ₂ is absorbed in water, the following two equilibria reactions take place: $SO_2(g) + H_2O(l) + \frac{1}{2}O_2(g) \rightleftharpoons SO_4^{2^-}(aq) + 2H^+(aq) - (1)$ $HCO_3^-(aq) + H^+(aq) \rightleftharpoons H_2O(l) + CO_2(g) - (2)$ (from seawater)							
CaO has a lower magnitude of lattice energy than MgO due to a larger cationic radii. Thus, CaO should be more soluble than MgO and so giving a higher concentration of OH ⁻ ions when CaO is added to water. ; Na ₂ O is very soluble in water (lowest magnitude of lattice energy), thus it will give the highest concentration of OH ⁻ in solution, thus most basic. ; Student C suggested that seawater can also be used to absorb and remove SO ₂ . The main substance in seawater that is responsible for removing SO ₂ is the HCO ₃ ⁻ ions. When SO ₂ is absorbed in water, the following two equilibria reactions take place: $SO_2(g) + H_2O(l) + 1/2O_2(g) \rightleftharpoons SO_4^{2^-}(aq) + 2H^+(aq) - (1)$ $HCO_3^-(aq) + H^+(aq) \rightleftharpoons H_2O(l) + CO_2(g) - (2)$ (from seawater)						[3]	
Thus, CaO should be more soluble than MgO and so giving a higher concentration of OH ⁻ ions when CaO is added to water.; Na ₂ O is very soluble in water (lowest magnitude of lattice energy), thus it will give the highest concentration of OH ⁻ in solution, thus most basic.; Student \mathbf{C} suggested that seawater can also be used to absorb and remove SO ₂ . The main substance in seawater that is responsible for removing SO ₂ is the HCO ₃ ⁻ ions. When SO ₂ is absorbed in water, the following two equilibria reactions take place: $SO_2(g) + H_2O(l) + \frac{1}{2}O_2(g) \rightleftharpoons SO_4^{2-}(aq) + 2H^+(aq) - (1)$ $HCO_3^-(aq) + H^+(aq) \rightleftharpoons H_2O(l) + CO_2(g) - (2)$ (from seawater)			pH of MgO < pH of 0	CaO < pH of Na₂0	O (accept between 9-13);		
highest concentration of OH ⁻ in solution, thus most basic. ; Student C suggested that seawater can also be used to absorb and remove SO ₂ . The main substance in seawater that is responsible for removing SO ₂ is the HCO ₃ ⁻ ions. When SO ₂ is absorbed in water, the following two equilibria reactions take place: $SO_2(g) + H_2O(l) + \frac{1}{2}O_2(g) \rightleftharpoons SO_4^{2^-}(aq) + 2H^+(aq) - (1)$ $HCO_3^-(aq) + H^+(aq) \rightleftharpoons H_2O(l) + CO_2(g) - (2)$ (from seawater)			Thus, CaO should b	e more soluble tl	han MgO and so giving a higl		
substance in seawater that is responsible for removing SO_2 is the HCO_3^- ions. When SO_2 is absorbed in water, the following two equilibria reactions take place: $SO_2(g) + H_2O(l) + \frac{1}{2}O_2(g) \rightleftharpoons SO_4^{2^-}(aq) + 2H^+(aq) - (1)$ $HCO_3^-(aq) + H^+(aq) \rightleftharpoons H_2O(l) + CO_2(g) - (2)$ (from seawater)							
absorbed in water, the following two equilibria reactions take place: $SO_2(g) + H_2O(l) + \frac{1}{2}O_2(g) \rightleftharpoons SO_4{}^{2-}(aq) + 2H^+(aq) - (1)$ $HCO_3^-(aq) + H^+(aq) \rightleftharpoons H_2O(l) + CO_2(g) - (2)$ (from seawater)		Stu	dent C suggested tha	at seawater can a	lso be used to absorb and ren	nove SO ₂ . The main	
$SO_2(g) + H_2O(l) + \frac{1}{2}O_2(g) \rightleftharpoons SO_4^{2-}(aq) + 2H^+(aq) - (1)$ $HCO_3^-(aq) + H^+(aq) \rightleftharpoons H_2O(l) + CO_2(g) - (2)$ (from seawater)		sub	stance in seawater th	nat is responsible	for removing SO ₂ is the HCO	$_3$ ions. When SO ₂ is	
$HCO_3^-(aq) + H^+(aq) \rightleftharpoons H_2O(l) + CO_2(g)$ — (2) (from seawater)		abs	orbed in water, the fo	ollowing two equil	ibria reactions take place:		
(from seawater)			SO ₂ (g)	$+ H_2O(l) + \frac{1}{2}O_2(g)$	$g) \rightleftharpoons SO_4^{2-}(aq) + 2H^+(aq) - 0$	(1)	
			HC	O ₃ -(aq) + H+(aq)	$\Rightarrow H_2O(l) + CO_2(g) - (2)$		
(iii) Evalois how the use of convertes would allow the second of sulfing distribution			(from s	eawater)			
THE EVOIDID DOW TOO HED OF COOLIGION WOULD DUOW TOO POSSONOL OF AUSTUR MANAGE.		(iii)	Evolain how the was	of cooweter we	ld allow the removed of author	diovido	<u> </u>

				1 1
			[2]	
			When SO ₂ is absorbed in the water, it will react with water and oxygen to from sulfate and H ⁺ ions. The presence of HCO ₃ ⁻ in the seawater will remove H ⁺ ions as CO ₂ , which will escape into the atmosphere. ;	For Examiner's use
			This will shift the position of equilibrium (2) forward, which in turn shifts the position of equilibrium (1) to the right, removing SO_2 .	
			[Total: 23]	
3	(a)	The	e Kolbe electrolysis is an electrochemical method used to synthesise alkanes. Carbon	
			xide and ethane was produced during the Kolbe electrolysis of an aqueous solution of assium ethanoate.	
		The	e reaction mechanism involves a three-stage process.	
			step I, the ethanoate ion CH ₃ COO ⁻ is first converted into an ethoxy radical intermediate ₃ COO•.	
		Thi	s intermediate then undergoes decarboxylation to form a methyl radical intermediate.	
		ste	p II $CH_3COO \bullet \rightarrow \bullet CH_3 + CO_2$	
		Fin	ally two methyl radical intermediates dimerises to form the alkane product.	
		ste	p III 2 •CH₃ → CH₃-CH₃	
		(i)	Given that the reaction in step I takes place at the anode, write a half-equation for the reaction.	
			[1]	
			CH ₃ COO ⁻ → CH ₃ COO• + e ⁻	
		(ii)	Write another half-equation to illustrate the formation of a gaseous product at the cathode.	
			[1]	

	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	
(iii)	Calculate the volume of gas produced at the cathode at room temperature and pressure when a current of 500 mA is passed for 20 minutes through a solution of potassium ethanoate.	For Examiner's use
	$\begin{split} &Q{=}lt = 500 \text{ x } 10^{-3} \text{ x } 20 \text{ x } 60 = 600 \text{ C} \text{ ;} \\ &Q{=}n_e F \\ &\Rightarrow 600 = n_e \text{ (96500)} \\ &n_e = 0.00622 \text{ mol ;} \\ &n(H_2) = n_e \text{ / } 2 = 3.11 \text{ x } 10^{-3} \text{ mol} \\ &v(H_2) = 3.11 \text{ x } 10^{-3} \text{ x } 24 = 0.0746 \text{ dm}^3 \text{ (or } 74.6 \text{ cm}^3\text{) ;} \end{split}$	
	[3]	
(iv)	Use the information given above to draw out the full mechanism for steps II and III. Use appropriate curly arrows to indicate which bonds are broken and which bonds are formed.	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	[2]	
(v)	In a separate Kolbe electrolysis experiment, an alkane X was produced when a mixture of an ethanoate salt and the salt of a carboxylic acid was electrolysed. A gaseous sample of 0.30 g of X occupied 168 cm³ at 300 K and 1 atm. Calculate the M _r of X and hence deduce its molecular formula.	
	$PV = \frac{m}{Mr}RT$ $Mr = \frac{mRT}{PV}$ $= \frac{(0.30)(8.31)(300)}{(101325) \times (168 \times 10^{-6})}$ $= 43.9 ; ;$	
	Alkanes have the formula C_nH_{2n+2} $12(n) + 2n + 2 \approx 44$ n = 3 $\Rightarrow \mathbf{X}$ is C_3H_8 ;	

		[3]	
(b)	Gal	vanic cells are electrochemical cells that contain a spontaneous reaction. An example of	For Examiner's
		alvanic cell include the zinc-carbon battery. Ammonium chloride is used as electrolyte in	use
	zino	c-carbon batteries, where the outer zinc casing is the negatively charged terminal and is	
	oxio	dised during discharge.	
	The	e following reaction also takes place in the cell.	
		$\text{mO}_2(s) + 2e^- + 2\text{NH}_4\text{C}l(aq) \rightarrow \text{Mn}_2\text{O}_3(s) + 2\text{NH}_3(aq) + \text{H}_2\text{O}(l) + 2\text{C}l^- (aq) E^\Theta = +0.5 \text{ V}$	
	ZIVII	$110_2(5) + 2e^{-\frac{1}{4}} = 21111_40_1(aq) \rightarrow 1111_20_3(5) + 21111_3(aq) + 11_20(1) + 201 (aq) L^{-\frac{1}{4}} = +0.5 \text{ V}$	
	(i)	Write a half-equation for the reaction occurring at the negatively charged terminal.	
		Hence, write an overall equation for the reaction that occurs in the cell.	
		rol	
		[2]	
		$Zn(s) \to Zn^{2+}(aq) + 2 e^{-};$	
		$Zn(s) + 2 \ MnO_2(s) + 2 \ NH_4Cl(aq) \rightarrow Mn_2O_3(s) + ZnCl_2(aq) + 2NH_3(aq) + H_2O(l) \ ;$	
	(ii)	Calculate the voltage that is generated by this cell.	
		$E^{\circ}_{cell} = (+0.5) - (-0.76) = +1.26V$	
		[1]	
	(iii)	Calculate a value of ΔG^{Θ} for the cell reaction, and explain the significance of its sign.	
		$\Delta G^{\circ} = - nFE^{\circ} = - 2 \times 96500 \times 1.26 = - 243 \times 000 \text{ J mol}^{-1}$	
		= - 243 kJ mol ⁻¹ ; The sign of ΔG° is negative and hence the reaction is spontaneous.;	
		[2]	
		[Total: 15]	

4	(a)	A re	eaction scheme is shown below.
			OH CH ₂ CHO A OH CH ₂ CHO NaOH(aq), heat B Br ₂ (aq) C CH ₃ NH ₂ OH CH ₂ CH ₂ CN CH ₂ CH ₂ COOH CH ₂ CH ₂ COOH
		(i)	Draw the structures of A , B , C & D in the boxes provided.
			[4]
		(ii)	State the reagents and conditions for steps I, II, III, IV.
		۱,	
			Step II: Step IIII: Step IV:
			[+]

(h)	OH CH2CHO CH2CHO CH2CHO CH2CH2Br CH2CH2Br CH2CH2Br CH2CH2Br CH2CH2DH OH CH2CH2CH OH CH2CH2CH OH CH2CH2CH CH2CH2COH CH2CH2CH2COH CH2CH2CH2CH CH2CH2CH CH2CH2CH2CH CH2CH2CH2CH2CH CH2CH2CH2CH	For Examiner's use
(b)	Compare the acidicity between phenol and 2,4,6-trinitrophenol. State and explain which of	
	the two compounds is more acidic.	
	[2]	
	2,4,6-trinitrophenol is more acidic. NO ₂ groups are electron withdrawing groups which	
	disperses the negative charge on O of the phenoxide ion.; Thus, the phenoxide ion is more stable, resulting in a more acidic solution.;	
(c)	The amino acid, alanine, has the structure shown below.	
	$\begin{array}{c} H \\ \mathrm{CH_3-\overset{ }{C}-NH_2} \\ \mathrm{CO_2H} \end{array}$ alanine	
	(i) By drawing an appropriate structure, explain why alanine has a surprisingly high melting point considering its relatively small molecular mass.	

	,		
		101	
		[2]	
			For
			xaminer's use
		H-C-COOT NH3t.	
		ntl.+	
		Alanine exist as a zwitterion in solid state, with strong electrostatic forces of attraction	
		between oppositely charged ions. Thus, a large amount of energy is required to	
		overcome these strong forces of attraction, resulting in a high melting point.;	
-		(ii) Solutions of amino acids are buffers important in maintaining optimal pH in our body.	
		, , , , , , , , , , , , , , , , , , ,	
		With the aid of an equation, show how alanine behaves as a buffer when small amount	
		of base is added.	
		[1]	
		CH3 11-C-C00-+ OH> H-C-C00-+ HED NN3+ NH2	
		H-C-C00- + OH> H-C-C00- + H20	
		My + MA2	
		iii) By drawing suitable structures, state the type of isomerism displayed by alanine.	
	\	By drawing suitable structures, state the type of isomerism displayed by alanine.	
		H	
		NH ₂ H ₂ N	
		H ₃ C CO ₂ H HO ₂ C CH ₃	
		Enantiomerism;	
		101	
		[2]	
		[Total: 15]	
		ı	

5	(a)	Agı	ueous magnesium chloride can act as a weak monobasic acid. In an experiment,	
		_	0 cm ³ of an aqueous solution of magnesium chloride at an initial pH of 6 was titrated with	
			0 mol dm ⁻³ sodium hydroxide. 20 cm ³ of NaOH(aq) was required for complete	
			utralisation.	
		(i)	By writing suitable equations, illustrate how aqueous magnesium chloride can act as a	
			weak monobasic acid.	
			$\frac{\text{MgC}l_2 + 6\text{H}_2\text{O} \rightarrow [\text{Mg}(\text{H}_2\text{O})_6]^{2^+} + 2\text{C}l^-}{[\text{Mg}(\text{H}_2\text{O})_6]^{2^+}} = [\text{Mg}(\text{H}_2\text{O})_5\text{OH}]^{2^+} + \text{H}^+$	
			[2]	
		(ii)	Calculate the initial concentration of magnesium ions.	
			20.00	For Examiner's
			$[Mg^{2+}] \text{ initial} = \frac{\frac{20.00}{1000} \times 1}{50.00} = 0.4 \text{ mol dm}^{-3}$	use
			1000 [1]	
		(iii)	Calculate the K_a value for a solution of aqueous magnesium chloride.	
			initial pH = $6 \Rightarrow [H^+] = 1 \times 10^{-6}$;	
			$K_{\rm a} = \frac{[Mg(H_2O)_5OH]^+[H^+]}{[Mg^{2+}]}$	
			$=\frac{(10^{-6})^2}{}$	
			(0.4)	
			$= 2.5 \times 10^{-12} \text{mol dm}^{-3}$;	
			[2]	
	(b)	In a	a different experiment, a solution containing 0.100 mol dm ⁻³ magnesium chloride and	
		0.1	00 mol dm ⁻³ barium chloride was prepared. Solid sodium carbonate was added slowly to	
		1 d	m ³ of this solution in an attempt to separate the two metal cations.	
		[Giv	ven, K_{sp} of MgCO ₃ = 3.5×10^{-8} mol ² dm ⁻⁶ ; K_{sp} of BaCO ₃ = 5.1×10^{-9} mol ² dm ⁻⁶]	
		(i)	Calculate the concentration of carbonate in the solution, needed for the first trace of	
			precipitate to be seen, stating which metal ion is precipitated first.	
			Ba ²⁺ is precipitated first.;	
			When BaCO ₃ precipitates; $[CO_3^2]_{min} = 5.1 \times 10^{-8} \text{ mol dm}^{-3}$;	
			[2]	
		(ii)	Determine the concentration of the metal ion in (b)(i) remaining in the solution when the	
			other metal ion just starts to precipitate.	
			As Mg(OH) ₂ starts to precipitate, $[CO_3^{2-}] = 3.5 \times 10^{-7} \text{ mol dm}^{-3}$;	
			[Ba ²⁺] remaining in solution = $\frac{5.1 \times 10^{-9}}{100} = 0.0146 \text{ mol dm}^{-3}$;	
			3.5 x 10⁻⁻	
			[2]	
	1	 		<u> </u>

	(iii)	Given that an effective separation means that less than 1% of a metal ion should remain	
		in solution, deduce if the separation of the metal ion in (b)(i) has been effective.	
		% of Ba ²⁺ remained in solution = $\frac{0.0146}{010} \times 100 = 14.6 \% >> 1\%$; \Rightarrow separation is not effective;	
		[2]	
		[Total: 11]	

End of Paper 2

BLANK PAGE