Chapter 4 : Functions

Content Outline

Include :

- concepts of function, domain and range
- use of notations such as $f(x) = x^2 + 5$, $f: x \mapsto x^2 + 5$, $f^{-1}(x)$, fg(x) and $f^2(x)$
- finding inverse functions and composite functions
- conditions for the existence of inverse functions and composite functions
- domain restriction to obtain an inverse function
- relationship between a function and its inverse

Exclude the use of the relation $(fg)^{-1} = g^{-1} f^{-1}$, and restriction of domain to obtain a composite function.

Reference

- <u>http://www.h2maths.site</u>
- <u>https://www.mathisfun.com/sets/function.html</u> [Website on properties of function , composite functions]

- Heinemann Higher Mathematics, Heinemann. Call No: CLA 510.712
- MEI Pure Mathematics 2, 2nd ed, Hoddler & Stoughton. Call No: HAN 510
- Modular Maths Pure Mathematics 2, Hoddler & Stoughton. Call No: SYK 510
- DoBrilliantly ASMaths, Collins. Call No: GRA 510

Prerequisites

• Sketch graphs y = f(x) of the following types: linear, quadratic, cubic, reciprocal, exponential, logarithmic, sine, cosine, and tangent.

Introduction

Before we introduce functions, we need to understand what a **relation** is.

- In layman's term, a **relation** is an equation connecting a variable *x* with another variable *y*.
 - A relation is a set of ordered pairs.
 - The first elements in the ordered pairs, the *x*-values, form the **domain** (Input values).

Function is a <u>relation</u> between a set of inputs and a set of outputs with the property that each input maps to exactly one output.

<u>1.</u> Functions

A **function** $f : X \to Y$ is a **rule** (or relation) which associates each element in *X* (known as the domain) with a <u>unique</u> element in *Y* (known as the range), i.e. a function is a rule y = f(x) such that every value of $x \in X$ has exactly one value of $y \in Y$.

In diagrammatic form, a function can be visualised as follows:

- The set of input values forms the **domain**.
- The corresponding set of output values forms the **range**.

<u>1.1</u> To determine whether a given rule is a function

A **function** $f: X \to Y$ is a **rule** (or relation) which associates each element in *X* (the domain) with a <u>unique</u> element in *Y* (the range). This means that for the graph of a function, there will be only one *y*-value corresponding to every *x*-value. So a vertical line drawn at any *x*-value in the domain should cut the graph of the function at exactly one point.

Hence, if there exists <u>a vertical line (x = k)</u> which cuts the graph of the relation at more than one point (which means an *x*-value has more than one *y*-value), then the relation does not represent a function.

Example 1

Determine which of the following represents the graph of a function and state your reason(s): (a) (b)

Solution:

- 1(a) There exists a vertical line, x = k which cuts the graph at two points, hence it is not a function.
- 1(b) Any vertical line will cut the graph at most once. Hence this graph represents a function.

Mini Exercise

Write the following in inequalities and interval notations.

Description of solution set	Inequalities	Interval notation
values from 1 (inclusive) to infinity	$x \ge 1$	
values from negative infinity to 1 (exclusive)	<i>x</i> < 1	
values from 1 (inclusive) to 5 (exclusive)	$1 \le x < 5$	
all real values excluding 1	x < 1 or $x > 1$	or $\mathbb{R} \setminus \{1\}$

Note the use of interval notation :

(a,b) to represent the interval $\{x \in \mathbb{R} : a < x < b\}$,

$$[a,b]$$
 to represent the interval $\{x \in \mathbb{R} : a \le x \le b\}$,

$$(a,b]$$
 to represent the interval $\{x \in \mathbb{R} : a < x \le b\}$,

[a,b) to represent the interval $\{x \in \mathbb{R} : a \le x < b\}$,

 (a,∞) to represent the interval $\{x \in \mathbb{R} : x > a\}$,

 $[a,\infty)$ to represent the interval $\{x \in \mathbb{R} : x \ge a\}$,

 $(-\infty, b)$ to represent the interval $\{x \in \mathbb{R} : x < b\}$,

 $(-\infty, b]$ to represent the interval $\{x \in \mathbb{R} : x \le b\}$.

 ${\mathbb R}$ represents the set of real numbers.

 \mathbb{R}^+ represents the set of positive real numbers.

 \mathbb{R}_0^+ represents the set of positive real numbers including 0. [or $\mathbb{R}^+ \cup \{0\}$]

Example 2:

The function f is defined by f: $x \mapsto x^2$, x > 2. State the rule and the domain of f.

Solution:

The rule is

The domain of f =

Note:

There are various ways of writing a function as shown below:

(a)	$\mathbf{p}(x) = \mathbf{e}^x, \ x \le 0$	(b)	$f: x \mapsto x^2, x$	$\in \mathbb{R}$
(a)	$q \cdot r \mapsto r^3 r > 0$	(4)	$a(x) = \int 1 - x,$	for $0 \le x \le 1$
(c) $g: x \mapsto x$, $x > 0$	(u)	q(x) = 1 + x,	for $-1 \le x < 0$	

In most cases, the name of the function is denoted by lower case alphabet (f, g, p, q etc). All functions are defined by a rule and a domain.

Note:

Two functions with the **same rule** but with **different domains** are considered as **different functions.**

Example 3

Given $f: x \mapsto (x+1)^2$, $x \in \mathbb{R}$. Determine whether g or h is the same as f. Give reasons for your answers.

(a) $g(u) = u^2 + 2u + 1$, $u \in \mathbb{R}$ (b) $h(x) = (x + 1)^2$, $x \in \mathbb{R}^+$

Solution :

<u>1.2</u> Use of GC to find range

The graph of a function is a way of visualising the relationship between *y* and *x*. The **graph** provides a simple way to **see the range** of a function. We can sketch the graph using the GC.

Example 4

Find the range of the function $g: x \mapsto x^2 + 1, x > 2$.

Note to students:

First, sketch the graph of $y = x^2 + 1$, x > 2. [Refer to Annex 5.1] State the end point (2, 5). From the graph, determine the set of possible values of y that the function can take.

Solution:

Example 5

Find the range of the function f: $x \mapsto x^2 + 1, x \ge -1$.

Solution:

Hence, $R_f =$

Mini Exercise

Complete the following table of exercises:

No.	Types of Functions	Sketches	Domain / Range of functions
1.	$g(x) = (x-1)(x+2), x \ge -2$	$\begin{array}{c c} y \\ -\frac{1}{2} \\ \hline -2 \\ \hline 0 \\ -\frac{9}{4} \end{array}$	
2.	$h(x) = \ln x, x > 0$		
3.	$\mathbf{q}(x) = \frac{1}{x}, x \in \mathbb{R} \setminus \{0\}$		

2. **Inverse functions**

Not every function has an inverse. A function has to be one-one for its inverse to exist. The idea of one-one function will be further addressed in 2.1.

Example 6

Consider the function f: $x \rightarrow 2x$ with $x \in \{1, 2, 3\}$. Then, f(1) = 2, f(2) = 4, f(3) = 6. Find the rule and domain for the function g such that g(2) = 1, g(4) = 2, g(6) = 3.

Solution:

Function represented by \leftarrow ---- is g, with rule

NOTE:

Function g is known as the **inverse** of f, and is usually represented by f^{-1} (instead of g). (i) It "reverses" the effect of the original function f. Another way of saying this is "the inverse takes the y-values and recovers the x-values."

In the form of a diagram, the inverse can be visualized as follows:

Notice that the domain of f^{-1} is the same as the range of f, (ii) and the range of f^{-1} is the same as the domain of f.

Therefore,
$$D_{f^{-1}} = R_f$$
, $R_{f^{-1}} = D_f$

(iii) Bear in mind that $f^{-1}(x) \neq \frac{1}{f(x)}$.

JC1-2023

2.1 Existence of Inverse Function

If we try to find the "inverse" for $f(x) = x^2$, we end up with the following "rule": $x = \pm \sqrt{y}$. Recall that a function relates each "x" (each input value) with **exactly one** output "y" via a rule. Does this condition apply when we consider $x = \pm \sqrt{y}$?

In fact, the inverse function f^{-1} is defined if and only if f is a one-one function.

Definition of one-one function

A function for which every element of the range of the function corresponds to exactly one element of the domain is a one-one function

To determine whether a function is one-one

(1) Use Graph to show that the function f is one-one or NOT one-one

Based on the definition of one-one function, we notice that if a function is one-one, then any horizontal line y = k will cut the graph at most once (a single value of y has a single value of x related to it).

If there exists **a horizontal line** y = k which cuts the graph more than once (meaning at more than one point), then the function is <u>NOT</u> a one-one function.

(2) Use a counter example to show that the function f is NOT one-one

Find two values of *x*, say *a* and *b* and show that f(a) = f(b).

Example 7 (The solution presented in this example is expected for examination) Determine if each of the functions is one-one.

There exists a horizontal line y = k that cuts the graph of f more than once, f is not a one-one function.

Any horizontal line y = k cuts the graph of g <u>at most once</u>, g is <u>one-one</u> function.

Note: Show the horizontal line y = k on your sketch.

Alternatively, for (i) since f(-1) = f(1) = 1, f is <u>not a one-one</u> function.

2.2 To Find the Inverse Rule and Domain

We use the symbol f^{-1} to represent the **inverse** of the function f. Recall from Example 6 that:

$$D_{f^{-1}} = R_f$$
 $R_{f^{-1}} = D_f$

In general, the steps for finding inverse function of f are

Step 1 Write y = f(x), and $x \in D_f$.

Step 2 Manipulate to make *x* as the subject

Step 3 Replace y with x

Step 4 Write down the domain of f^{-1} in terms of *x* (Obtain from the range of f).

Example 8

Find the inverse of the function $f: x \mapsto 1 + e^{1-x}, x \in \mathbb{R}$.

Solution:

Solution.		
Step 1	Let $y = f(x) = 1 + e^{1-x}$, $x \in \mathbb{R}$	
Step 2	Then, $y - 1 = e^{1-x}$	12-
	$\ln\left(y-1\right) = 1 - x$	$\int \int \int f(x) dx = f(x)$
	$x = 1 - \ln\left(y - 1\right)$	
Step 3	$f^{-1}(x) = 1 - \ln(x-1)$	
G4 4		y = 1 ²
Step 4	$D_{f^{-1}} = K_f =$	$-1 \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad \checkmark \\ + \qquad +$

Note: Domain must always be indicated when writing down a function.

JC1-2023

Example 9

Complete the table below:

Function	Graph	Is this function one- one?	Does the inverse function exist? If yes, find the inverse.
(a) $p(x) = e^x, x \in \mathbb{R}$	$y = k$ $y = k$ $y = e^{x}$ $y = e^{x}$	Yes Any horizontal line y = k cuts the graph at most once. Hence the function is one-one.	$y = e^{x}, x \in \mathbb{R}$ $x = \ln y$ $p^{-1}(x) = \ln x, x \in \mathbb{R}^{+}$
(b) $f(x) = (x-1)^2$, x > 0	$y = (x - 1)^2$ (0,1)		

In the above exercise, which function is not one-one?

RESTRICTED DOMAIN FOR EXISTENCE OF INVERSE FUNCTION

Can we restrict the domain of $f(x) = (x - 1)^2$, x > 0 so that the function is one-one? What are the domains that you can find so that the function is one-one?

$$D_{f} = (0,1)$$
, , etc

The largest possible domain among these is $[1,\infty)$.

Example 10

The function f is defined by $f: x \mapsto x^2 - 2x$, x > 0. State a reason why f^{-1} does not exist.

Find the smallest value of *a* such that the inverse of f exists in $[a, \infty)$. Hence find f^{-1} in a similar form.

Solution :

There exists a horizontal line y = k that cuts the graph of y = f(x) more than once. Hence, f is not one-to-one. So, f^{-1} does not exist.

For f to be one-one, the largest possible domain is

 $\therefore a = 1$.

Let $y = x^2 - 2x$, $x \in [1, \infty)$.

Alternatively,
Let
$$y = x^2 - 2x$$

 $x^2 - 2x - y = 0$
 $x = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-y)}}{2}$
 $x = \frac{2 \pm \sqrt{4(1+y)}}{2} = 1 \pm \sqrt{1+y}$
since $x \ge 1$, $x = 1 + \sqrt{y+1}$
 $D_{f^{-1}} = R_f = [-1, \infty)$
Thus, $f^{-1} : x \mapsto 1 + \sqrt{x+1}$, $x \ge -1$

Example 11

Find the inverse of the functions (i) $g(x) = \frac{1}{x^2}$, x < 0, (ii) $h(x) = \frac{1}{x^2}$, x > 0.

Solution:

(ii) Let
$$y = \frac{1}{x^2}$$
, where $x > 0$.

$$\therefore x^2 = \frac{1}{y} \Rightarrow x = \pm \frac{1}{\sqrt{y}}$$
Since $x > 0$, $x = \frac{1}{\sqrt{y}}$
Hence, $h^{-1}(x) = \frac{1}{\sqrt{x}}$, $x > 0$

2.3 Relationship between graph of f and graph of f⁻¹

Example 12

The diagram below shows the graphs of

(a)
$$f(x) = 2x - 3, x \in [-1, 5]$$
 and $f^{-1}(x) = \frac{x+3}{2}, x \in [-5, 7]$
(b) $g(x) = e^x, x \in \mathbb{R}$ and $g^{-1}(x) = \ln(x), x \in \mathbb{R}^+$.

How are the graphs related to each other?

Solution:

From the above example (a), we can observe that the graph of f and the graph of f^{-1} are reflections of each other in the line y = x.

Similarly from example (b) the graph of g and the graph of g^{-1} are reflections of each other in the line y = x.

In general,

Graphs of the function and its inverse are reflections of each other in the line y = x.
 Graphs of the function and its inverse intersect (if any) along y = x. i.e. graphs of y = f(x), y = f⁻¹(x) and y = x have common point(s) of intersection, if any.

Example 13

On the same diagram, sketch the graph of the inverse function of (a) $f(x) = x^2$, $x \ge 0$ (b) $g(x) = x^3$, $x \in [-2, 2]$. Showing clearly the relationship of the function and its inverse.

3. Composite Functions

The term "composite function" refers to the combining of functions in a manner where the output(range) from one function becomes the input(domain) for the next function.

If we have two functions f and g, we can define a composite function gf.

For example, if $f(x) = x^3$ and g(x) = 2x-1, we have gf(x) = g(f(x)) $= g(x^3)$ $= 2(x^3)-1$

On the other hand, we can define the composite function fg.

In this case we have fg(x) = f(g(x))

$$= f(2x-1)$$
$$= (2x-1)^{3}$$

Notice that gf(x) and fg(x) are different.

Note:

- The order of the functions is important: gf and fg are not the same function
- gf(x) means "apply f to x first to get f(x), then apply g to f(x) to obtain gf(x)."
- $f^{2}(x)$ does not mean $[f(x)]^{2}$. $f^{2}(x)$ refers to the composite function ff(x).

Hence, in general, $f^{n}(x)$ refers to the composite function $f \dots f(x)$

Looking at the diagram above, can you deduce what is the **domain of gf** ?

Example 14

Functions f and g are defined by

f:
$$x \to x^2, x \in \mathbb{R}^+$$
,
g: $x \to 2-3x, x \in \mathbb{R}$.

For the composite function gf, find its rule, domain and range.

Solution:

 $gf(x) = g(f(x)) = g(x^{2}) = 2 - 3x^{2}$ Domain of gf = Domain of f = (0,\infty)
Range of gf is (-\infty,2)
Graph of y = gf (x)

3.1 Existence of composite function

In section 2, we saw that a function f has an inverse f^{-1} provided f is one-one. Similarly, certain conditions must be satisfied before a composite function fg can be formed (or "for fg to exist".)

The condition is:

Composite function fg exists if and only if
$$R_g \subseteq D_f$$
.

To understand this condition, recall: a function comprises a rule and domain, such that the rule can be applied to *every* element in the domain. Therefore, why is this condition $\mathbf{R}_{g} \subseteq \mathbf{D}_{f}$ necessary for fg to be formed?

JC1-2023

Given that $f(x) = 1 - x^2$, $-1 \le x < 1$ and $g(x) = \sqrt{x}$, $x \ge 0$.

(i) Sketch separately the graphs of f and g.

(ii) State, giving your reasons, whether fg and gf exist. For the composite function that exists, find its rule, domain and range.

Solution:

(i)

(ii)

Thus, only function gf exists, and is defined by gf (x) = g(1-x²) = $\sqrt{1-x^2}$, $-1 \le x < 1$

Graph of
$$y = gf(x)$$

-1 1

Range of gf is [0,1]

Alternatively, when $f(x) = 1 - x^2$, $-1 \le x < 1$ and $g(x) = \sqrt{x}$, $x \ge 0$,

Range of gf can also be obtained by a <u>mapping method</u> shown below:

$$\begin{bmatrix} D_{f} \\ -1,1 \end{pmatrix} \xrightarrow{f} [0,1] \xrightarrow{g} [0,1]$$
$$\therefore R_{gf} = [0,1]$$

Note :

Since a composite function is a function too, it is possible for us to talk about its inverse, if it exists. The following example gives a good illustration on this.

Example 16

The functions f and g are defined by f: $x \to x^2$, $x \in \mathbb{R}^+$ and g: $x \to 2-3x$, $x \in \mathbb{R}$. Use the answer in Example 14 to show that the function $(gf)^{-1}$ exists. State its rule, domain and range. Sketch the graph of $y = (gf)^{-1}(x)$.

Solution:

From Example 14, we have the composite function $gf(x) = 2 - 3x^2$, x > 0.

Any horizontal line y = k cuts the graph at most once, gf is a one-one function, hence $(gf)^{-1}$ exists.

20	y = gf(x)
	<i>y</i> = <i>k</i>

3.2 Pictorial Summary of Composite Function fg

4. Some special functions

(1) **Periodic functions**

A function f satisfies f(x) = f(x+a) for all real x where a is a positive constant, is called a periodic function with period a. The graph of f(x) will repeat itself every a units.

Example: $f(x) = \sin x$ is a periodic function with period 2π .

Name other periodic functions that you have learnt at O level.

(2) Even function

A function f satisfies f(-x) = f(x) for all real x is called an even function. The graph of f is symmetrical about the y-axis.

Example: $f(x) = x^2$ is an even function.

Name other even functions that you have learnt at O level.

(3) **Odd function**

A function f satisfies f(-x) = -f(x) for all real x is called an odd function. The graph of f is symmetrical about the origin.

Example: $f(x) = x^3$ is an odd function.

Name other odd functions that you have learnt at O level.

(4) **Piecewise function**

A **piecewise function** is a **function** which is defined by multiple sub-**functions**, each sub-**function** applying to a certain interval of the main **function's** domain (a sub-domain).

Example: A curve has equation y = f(x), where

f (x) =
$$\begin{cases} 1 & \text{for } 0 \le x \le 1, \\ \frac{1}{4}(x-3)^2 & \text{for } 1 < x \le 3, \\ 0 & \text{otherwise.} \end{cases}$$

Example 17 [2009/I/Q4(i)(ii)]

It is given that

$$f(x) = \begin{cases} 7 - x^2 & \text{for } 0 < x \le 2, \\ 2x - 1 & \text{for } 2 < x \le 4, \end{cases}$$

and that f(x) = f(x+4) for all real values of x.

(i) Evaluate f(27) + f(45).

(ii) Sketch the graph of y = f(x) for $-7 \le x \le 10$.

Solution:

(ii)

5. Annex

5.1 Using GC to sketch the graphs of f in $D_{\rm f}$.

Example 1: Sketch the graph of $f(x) = x^2 + 1$, x > 2.

	Steps / Explanation	Screen Display
Step 1	In the Y= window, press MATH then scroll up or down and select B: piecewise(. Use ◀ or ▶ to select 1 for the number of pieces. Press ♥ enter to select OK Key in the function and the domain. Note: Use 2nd MATH 3: to select >	HORMAL FLOAT AUTO REAL RADIAN HP Plot1 Plot2 Plot3 $Y1B{X^2+1; X>2}$ Y3= Y4= Y5= Y6= Y7= Y8=
Step 2	Press GRAPH . (You may adjust the window setting.)	NORMAL FLOAT AUTO REAL RADIAN MP

[2]

[3]

Example 2: Sketch the graph of $f(x) = \begin{cases} \\ \\ \\ \\ \end{cases}$	$\int 7-x^2$	for	$0 < x \le 2$
	2x-1	for	$2 < x \ge 4$

	Steps / Explanation	Screen Display
Step 1	In the Y = window, press math and select B: piecewise (. Enter the number of sub-functions and key in the respective sub-functions and sub- domains for Y_1 .	NORHAL FLOAT AUTO REAL RADIAN HP Plot1 Plot2 Plot3 NY18 $\begin{cases}7-X^2; 0NY2=NY3=NY4=NY5NY5=NY5NY5=NY5NY5NY5NY5NY5NY5NY5NY5$
Step 2	Press GRAPH .	NORHAL FLOAT AUTO REAL RADIAN MP

5.2 Using GC to sketch the graphs of f and f^{-1} .

E.g: Given $f: x \mapsto x^3$, $-2 \le x \le 2$, sketch the graph of f and f^{-1} on the same diagram.

	Steps / Explanation	Screen Display	
Step 1	To sketch the graph of $y = f(x)$ and $y = x$: In the Y = window, enter X ³ for Y ₁ and its domain and X for Y ₂ .	NORMAL FLOAT AUTO REAL RADIAN MP Plot1 Plot2 Plot3 NY18 $\{X^3; -2 \le X \le 2$ NY28X NY3= NY4=	
	Note: We enter X for \mathbf{Y}_2 to illustrate the relationship between the graph of f and f^{-1} . [To prepare for step 2, use Zoom In and Zoom Square]	NY 6= NY 7= NY 8=	
Step 2	To sketch the graph of $y = f^{-1}(x)$: Press 2nd prgm (draw) and select 8:DrawInv . This takes you to the Home Screen. Now press alpha trace (f4) and select Y ₁ . Upon pressing enter , it returns you to the GRAPH window, where you will see the graphs of f and f^{-1} together. Press zoom and choose 5: Zsquare to use the same scale for both the <i>x</i> - and <i>y</i> -axis. (You need to do Step 2 again every time you change the Zoom settings.)	NORMAL FLOAT AUTO REAL RADIAN HP	

Note: (i) To clear the graph of the inverse function: 2nd prgm1:ClrDraw

(ii)The GC will always show a graph using the "DrawInv" function even if f does not have an inverse.