1 The diagram shows the setup for a chemical reaction which produces a gas. The gas is then dried and collected.

What could the gas be?

- A carbon dioxide
- B hydrogen
- **C** oxygen
- **D** sulfur dioxide
- 2 The melting and boiling points of the gases in a sample of air are shown.

gas	melting point / °C	boiling point / °C
oxygen	-219	-183
argon	-189	-186
nitrogen	-210	-196

At which temperature will the sample of air contain oxygen as the only liquid?

- **A** -174°C
- **B** -187°C
- **C** -215°C
- **D** -222°C

3 Which of the following pairs of substances can be separated by heating?

- A ammonium chloride and iodine
- **B** ammonium chloride and potassium iodide
- **C** copper (II) nitrate and potassium iodide
- **D** copper (II) nitrate and sodium chloride

- 4 The following diagrams can be used to illustrate the following.
 - 1 a mixture of elements and compounds
 - 2 a mixture of elements
 - 3 molecules of an element
 - 4 molecules of a compound

What is the correct order of the diagrams?

	1	2	3	4
Α	Y	Z	Х	W
в	Z	Y	Х	W
С	Z	Y	W	х
D	Z	Х	W	Y

- **5** A student wrote the following statements in her test script:
 - statement 1: "Hydrogen chloride has a lower boiling point than calcium chloride as covalent bonds are weaker than electrostatic forces of attraction."
 - statement 2: "In a gaseous sample of methane, the intermolecular forces of attraction between the CH₄ molecules are weak."
 - statement 3: "In silicon dioxide, all valence electrons of silicon are used in the making of covalent bonds."

Which of the above statements are correct?

- A statement 1 and statement 2
- **B** statement 1 and statement 3
- **C** statement 2 and statement 3
- **D** statement 1, 2 and 3

6 The table shows the proton number and nucleon number of elements M and N.

element	proton number	nucleon number
М	13	27
Ν	8	16

When M and N react to form a compound, what will be the mass of one mole of the compound?

A 43

B 70

- **C** 102
- **D** 113
- **7** The relative masses and relative charges of particles V to Z are shown in Fig.1 and Fig. 2 respectively.

Which of the following statements are correct?

- 1 W represents an electron.
- 2 X represents a hydrogen ion.
- 3 Z represents the nucleus of a helium atom.
- 4 V and Y represent the nuclei of isotopes.
- A 1 and 2 only
- **B** 2 and 3 only
- **C** 1, 2 and 4 only
- **D** 2, 3 and 4 only
- 8 Which statement best explains why brass, made of copper and zinc, is suitable to make music instruments compared to pure copper?
 - **A** The zinc atoms form strong metallic bonds with copper atoms in brass.
 - **B** The zinc atoms have more valence electrons than copper atoms.
 - **C** The zinc atoms prevent layers of copper atoms from sliding over each other.
 - **D** The zinc atoms prevent the 'sea of electrons' from moving freely.

9 A 286 g sample of hydrated copper(II) sulfate contains 126 g of water of crystallisation.

What is the correct formula of this compound?

- **A** CuSO₄•3H₂O
- **B** $CuSO_4 \bullet 5H_2O$
- **C** $CuSO_4 \bullet 7H_2O$
- **D** $CuSO_4 \bullet 9H_2O$
- **10** Aqueous sodium hydroxide reacts with a certain metal chloride, MC*I*_n solution according to the equation given.

 $MCI_n + nNaOH \rightarrow M(OH)_n + nNaCI$

10.0 cm³ of 3.00 mol/dm³ NaOH solution were found to react with 10.0 cm³ of 1.50 mol/dm³ MC/_n solution.

What is the formula of the metal chloride?

- A MC/
- B MCl₂
- C MC/₃
- D MC/₄
- **11** Sulfur dioxide can react with oxygen to form sulfur trioxide as shown.

 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$

If 200 cm³ of sulfur dioxide is reacted with 200 cm³ of oxygen, what is the volume of gases remaining after the reaction?

- **A** 100 cm³
- **B** 200 cm³
- **C** 300 cm³
- **D** 400 cm³
- **12** An aqueous solution has a pH of 14.

What does this imply about the concentration of ions present in the solution?

	concentration of OH ⁻ ions	concentration of H ⁺ ions
Α	high	low
в	high	none
С	low	high
D	low	none

- **13** Which of the following equations suggests that the underlined oxide has amphoteric properties?
 - A $\underline{Ga_2O_3} + 2NaOH \rightarrow 2NaGaO_2 + H_2O$
 - **B** <u>Li₂O</u> + H₂O \rightarrow 2LiOH
 - **C** <u>CuO</u> + 2HC/ \rightarrow CuC/₂ + H₂O
 - **D** $\underline{Cl_2O}$ + 2NaOH \rightarrow 2NaC/O + H₂O
- 14 Which of the following salts can be prepared using the same method?
 - A calcium sulfate, zinc chloride,
 - **B** copper(II) sulfate, silver nitrate
 - **C** potassium nitrate, magnesium nitrate
 - D potassium iodide, silver iodide
- **15** The graph shows the optimal yield of ammonia at 450°C and 250 atm.

Which of the following graphs shows a correct comparison of the yield of ammonia produced at temperature of 500°C and 250 atm?

16 Several tests are performed on an unlabelled bottle containing an aqueous sample.

Which of the following results is likely to correspond to iron(II) chloride?

	test 1:	test 2:	test 3:
	add dilute nitric acid, then aqueous silver nitrate	add dilute nitric acid, then aqueous barium nitrate	add aqueous sodium hydroxide dropwise, then add in excess
A	no visible reaction	white precipitate formed	green precipitate formed, does not dissolve in excess sodium hydroxide
В	no visible reaction	white precipitate formed	reddish-brown precipitate formed, does not dissolve in excess sodium hydroxide
С	white precipitate formed	no visible reaction	green precipitate formed, does not dissolve in excess sodium hydroxide
D	white precipitate formed	no visible reaction	reddish-brown precipitate formed, does not dissolve in excess sodium hydroxide

17 Disproportionation is a reaction in which the same element is both oxidised and reduced.

Which reaction is **not** an example of disproportionation?

- $A \qquad Cl_2 + 2NaOH \rightarrow NaCl + NaOCl + H_2O$
- **B** $2CuCI \rightarrow CuCI_2 + Cu$
- $\label{eq:constraint} \textbf{C} \qquad 2H_2O_2 \rightarrow 2H_2O + O_2$
- $\textbf{D} \qquad 2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$
- 18 In an electrolysis experiment, the same amount of charge deposited 19.2 g of copper and 9 g of scandium. The charge on the copper ion is +2. [A_r: Sc, 45; Cu, 64]

What was the charge on the scandium ion?

- **A** +1
- **B** +2
- **C** +3
- **D** +4

- **19** Which property is **not** typical of transition metals?
 - **A** They exhibit variable oxidation states.
 - **B** They form coloured compounds.
 - **C** They have high melting points
 - **D** They have low densities.
- 20 The electrolysis set-up shown is incomplete.

What should be shown at X when the solution has been electrolysed for some time?

21 Lithium and rubidium are both in Group 1 of the Periodic Table.

Which statement is correct?

- A Lithium atoms and rubidium atoms have the same number of electrons in their outer shell.
- **B** Lithium atoms and rubidium ions have the same number of electrons in their outer shell.
- **C** Lithium atoms are larger than rubidium atoms.
- **D** Rubidium ions are larger than rubidium atoms.

22 In the following setup, magnesium and copper strips are pressed against a piece of wet filter paper soaked in dilute sulfuric acid and current can be detected by an ammeter.

Which of the following statement is correct?

- **A** Copper strip decreases in size.
- **B** Electrons flow from copper to magnesium through the external wire.
- **C** Magnesium strip is coated with a pink substance.
- **D** Oxidation occurs on the magnesium strip.
- **23** The graph shows the variation in boiling points for eight consecutive elements in Periods 3 and 4 of the Periodic Table with atomic numbers less than or equal to 20.

What can be deduced from the above?

- A Element P is a Group 1 element.
- **B** Element S has a metallic lattice structure.
- **C** Element U exists as diatomic molecules.
- **D** Element V is a strong reducing agent.
- 24 Magnesium blocks are attached to iron pipes to prevent them from rusting.

Which statement best explains how magnesium stop the iron from rusting?

- **A** Magnesium forms a compound with iron.
- **B** Magnesium reacts in preference to iron.
- **C** Magnesium reacts to form a protective coating of magnesium oxide to the iron.
- **D** Magnesium stops oxygen in the water from getting to the iron.

25 Three different reactions were set up as shown.

In beaker 1 metal W is displaced from solution.

In beaker 2 metal X is displaced from solution.

In beaker 3 metal Y is displaced from solution.

What is the order of reactivity of these four metals?

	most reactive -			least reactive
Α	W	Х	Z	Y
В	Х	Y	W	Z
С	Y	Х	W	Z
D	Z	W	Х	Y
	<u> </u>	vv	~	1

26 Limestone usually contains impurities.

The diagram shows the change in mass when pure calcium carbonate is heated.

Which graph, **A**, **B**, **C** or **D**, shows a sample of limestone, of the same mass, containing impurities that are thermally stable to decomposition?

27 The reaction of a metal oxide with hydrogen is shown.

Which of the following is correct?

	metal oxide	mass of metal oxide after heating
Α	copper(II) oxide	increases
В	lead(II) oxide	decreases
С	magnesium oxide	increases
D	zinc oxide	decreases

28 Hydrogen and chlorine react together to form hydrogen chloride

 $H_2(g) + Cl_2(g) \rightarrow 2HCl(g) \Delta H= -92 \text{ kJ/mol}$

The average bond energies of two of the bonds involved are shown in the table.

bond	H–H	C/–C/
bond energy / kJ/mol	436	244

What is the bond energy of a H-Cl bond?

- A 294 kJ/mol
- **B** 386 kJ/mol
- **C** 588 kJ/mol
- **D** 772 kJ/mol
- **29** Which change will increase the speed of the reaction between 1 mol of two reacting gases?
 - **A** a decrease in temperature
 - **B** a decrease in the volume of the reaction flask
 - **C** a decrease in surface area of the catalyst
 - **D** an increase in the volume of the reaction flask

30 A diagram for the energy change during a chemical reaction is shown.

For which reaction(s) would this be an appropriate diagram?

- 1 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ 2 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$ 3 $2C + O_2 \rightarrow 2CO$
- A 1 only
- B 1 and 2 only
- **C** 1 and 3 only
- **D** 1, 2 and 3
- **31** In two separate experiments, the reaction of calcium carbonate with an excess of dilute hydrochloric acid was investigated. The calcium carbonate used in Experiment 1 was more finely divided than that used in Experiment 2.

Assuming all other conditions were identical in both experiments, which of the following graphs best illustrates the results?

32 Solution X reacts with solid Y to form a gas.

Which two diagrams show suitable methods for investigating the speed of reaction?

- **A** 1 and 3
- **B** 1 and 4
- **C** 2 and 3
- **D** 2 and 4
- **33** The table shows the boiling points of four fractions, P, Q, R and S, obtained when crude oil is distilled.

fraction	Р	Q	R	S
boiling range / °C	35-75	80-145	150-250	greater than 250

How is fraction P different from S?

- **A** Fraction P is collected at the bottom while fraction S is collected at the top.
- **B** Fraction P is larger in molecular masses than fraction S.
- **C** Fraction P is more flammable than fraction S.
- **D** Fraction P is more viscous than fraction S.
- **34** What will propanol, C_3H_7OH , form on complete oxidation?
 - A CH₃CO₂H
 - B C₂H₅CO₂H
 - C C₃H₇CO₂H
 - \mathbf{D} C₄H₉CO₂H

35 The compound, C_6H_{12} undergoes the following process.

 C_6H_{12} $\xrightarrow{\text{process X}}$ ethene + compound Y

Which row in the table correctly identifies process X and compound Y?

	process X	compound Y
Α	cracking	butane
В	cracking	butene
С	distillation	butane
D	distillation	butene

36 How many isomers are there for butan-2-ol?

- **A** 1
- **B** 2
- **C** 3
- **D** 4
- **37** An ester with molecular formula C₆H₁₂O₂ undergoes hydrolysis to form an alcohol G and an acid H. Alcohol G can be oxidised to acid H by warming with acidified potassium manganate(VII).

Which of the following is the formula of the ester?

- A CH₃COOC₄H₉
- B C₂H₅COOC₃H₇
- C C₃H₇COOC₂H₅
- **D** HCOOC₅H₁₁

38 A compound has the following structure.

Which reaction(s) will occur with this compound?

- 1 It will react with aqueous bromine under room temperature.
- 2 It will react with an alcohol to form an ester.
- 3 It will react with sodium metal.
- A 1 only
- **B** 1 and 2 only
- **C** 2 and 3 only
- **D** 1, 2 and 3
- **39** The diagram shows part of the molecule of polymer Q.

Which row correctly describes the monomer of Q and how the polymer is formed?

	functional groups present in the monomer	polymer formed by
Α	alkene and amine	addition polymerisation
В	alkene and amine	condensation polymerisation
С	carboxylic acid and amine	addition polymerisation
D	carboxylic acid and amine	condensation polymerisation

40 Which row in the table shows the correct atmospheric pollutant and its possible effects?

	pollutant	effect
Α	CFCs	layer forms photochemical smog
В	CO ₂	is poisonous to humans
С	CO	cause depletion of the ozone
D	NO ₂	forms acid rain

						The Per	iodic Ta Gro	ble of Ele	ements						!	
1											13	14	15	16	17	18
						.										2
						т										He
			Key			hydrogen 1										helium 4
3 4		proton	(atomic) n	umber	_					_	5	9	7	8	6	10
Li Be		atc	omic symt	loc							в	U	z	0	ш	Ne
ithium berylliu	m		name								boron	carbon	nitrogen	oxygen	fluorine	neon
7 9		relati	ive atomic i	mass							11	12	14	16	19	20
11 12											13	14	15	16	17	18
Na Mg											Al	S	۵.	S	Cl	Ar
odium magnes 23 24	sium 3	4	5	9	7	8	6	10	11	12	aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
19 20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Sc	μ	>	ບັ	Mn	Fe	ပိ	īZ	Cu	Zn	Ga	Ge	As	Se	Ъ	Ł
39 calciu	m scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
37 38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb Sr	~	Zr	qN	Мо	Tc	Ru	Rh	РЧ	Ag	B	IJ	Sn	Sb	Te	I	Xe
ubidium strontit	um yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	ţi	antimony	tellurium	iodine	xenon
85 88	89	91	93	96	ı	101	103	106	108	112	115	119	122	128	127	131
55 56	57-71	72	73	74	75	76	22	78	79	80	81	82	83	84	85	86
Cs Ba	lanthanoid	s Hf	Та	>	Re	SO	1	Ŧ	Au	ВН	T <i>l</i>	Pb	Ē	Ъ	At	R
aesium bariut 133 137	ε.	hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	192	platinum 195	gold 197	mercury 201	204	207	bismuth 209	polonium	astatine _	radon _
87 88	80-103	101	105	106	107	108	100	110	111	110	113	114	115	116	117	118
Er Do	actinoids	2 2	3 2	3 5	2 4	P 1	PO1	Ê			2 4	Ξū			È r	ÊĈ
ancium radiur	E	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium	nihonium	1 L flerovium	moscovium	LV livermorium	tennessine	oganesson
1		I	I	ì	I	ı	I	I	, 1	I	I	I	I	I	I	I
-					1				1							
	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
lanthanoids	La	Se	Ł	PN	Pm	Sm	Ē	gd	Tb	D	РH	ш	Tm	Υb	Lu	
	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
	139	140	141	144	1	150	152	157	159	163	165	167	169	173	175	
	89	06	91	92	93	94	95	96	97	98	66	100	101	102	103	
actinoids	Ac	Ч	Ра	∍	dN	Pu	Am	CB	剐	ŭ	Ш	E	ΡW	No	۲	
	actinium	232	protactinium 23.1	oranium 238	neptunium	plutonium	americium	curium	berkelium	californium -	einsteinium -	fermium -	mendelevium	nobelium	lawrencium -	
		101	- 24	207												

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$