Candidate Index Number			

Anglo - Chinese School (Independent)

FINAL EXAMINATION 2023 YEAR 3 INTEGRATED PROGRAMME CORE MATHEMATICS PAPER 1

Friday 29th September 2023 1 hour 30 minutes

Candidates answer on the Question Paper. No additional materials are required.

INSTRUCTIONS TO CANDIDATES

- Write your index number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Answer all questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- The maximum mark for this paper is 80.

For Examiner's Use

This paper consists of 16 printed pages.

[Turn over

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer all the questions in the spaces provided.

(a) Evaluate $\frac{2\frac{3}{4} - \frac{1}{2}}{1 - \frac{1}{4}}$. [2]
(b) Simplify $\frac{\left(2a^4b^2\right)^3}{14b^{-2}c^6} \div \frac{1}{7\sqrt[4]{b^{-16}}}$, leaving your answer in positive index. [3]

2. [Maximum mark: 4]

The graph $y = 2(x-3)^2 + m - 4$ has a minimum point at (3,-8), where m is a constant.

(a) Find the value of m. [1]

(b) Hence, sketch the graph of $y = 2(x-3)^2 + m - 4$. Label the coordinates of the axesintercepts and turning point clearly. [3]

(a) Simplify
$$\frac{\sqrt{108}}{3} + 18\sqrt{3} - \frac{4\sqrt{27}}{3}$$
. [2]

		3	3	
(b)	(i)	Given that the points find the value of x .	s $P(\sqrt{5}, 1)$, $Q(x, \sqrt{5})$ and $R(3\sqrt{5}, 3)$ lie on the same stra	aight line, [3]
	(ii)	Find the length of PR	a , in the form $a\sqrt{b}$ units, where a and b are integers.	[2]

......[Working may be continued next page]

[Continuation of working space for Question 3]

4.	[Maximum mark: 5]
	Solve the following simultaneous equations.
	$\left(\sqrt[3]{5}\right)^{3x} = 125^y$
	$\log_3 x^2 + \log_3 y = 5$
	[5]

.....

Given the three points $A(-4, -2)$, $B(3, 2)$ and $C(0, 5)$, find	
(a) the equation of the line L_1 , which passes through C and is perpendicular to BC ,	[2]
(b) the coordinates of D , the point where L_1 cuts the line $5y-10=2x$,	[3]
(c) the area of the quadrilateral ABCD.	[3]

5. [Maximum mark: 8]

(a) (i)	Express	$\frac{x}{x^2 - 1}$	$+\frac{3}{x+1}$	as a single fraction in its simplest form.	[2]
---------	---------	---------------------	------------------	--	-----

(ii) Hence, solve
$$\frac{x}{x^2 - 1} + \frac{3}{x + 1} = 0$$
. [1]

(b) Solve $2x-6 < \frac{3(3-x)}{4} \le \frac{-x+4}{2}$ and state all the integers that satisfy the inequality. [5]
[Working may be continued next page]

[Continuation of working space for Question 6]

7.	[Maximum mark: 7]	
	(a) Factorise $25 - 4a^2 + 20ab - 25b^2$ completely.	[3]
	(b) Solve $\frac{32^{x^2}}{16} = 2^{8x}$.	[4]

The roots of the quadratic equation $2x^2 - 3x - 4 = 0$ are α and β .	
(a) State the value of $\alpha + \beta$ and of $\alpha\beta$.	[2]
(b) Find the value of $\alpha^2 + \beta^2$.	[3]
(c) Hence or otherwise, find the quadratic equation with roots $\alpha + \frac{\beta}{2}$ and $\frac{\alpha}{2} + \beta$.	[5]

8. [Maximum mark: 10]

9. [Maximum mark: 9]

In triangle ABC, $AB = 11 \,\mathrm{cm}$, $BC = 4\sqrt{3} \,\mathrm{cm}$ and $AC = 13 \,\mathrm{cm}$. BA is produced to D.

(a) Explain why angle *ABC* is a right angle.

[1]

(b) Expressing your answer as a fraction in its simplest form, find

(i)
$$\cos \angle DAC$$
, [1]

(ii)
$$\frac{\tan \angle ACB}{\cos \angle BAC}$$
. [3]

(c) Given that E is a point on BC such that EC = x cm and F is a point on AC such that AF is the reflection of AB in the line AE, calculate the value of x, leaving your answer in its simplest form. [4]

.....[Working may be continued next page]

[Continuation of working space for Question 9]

(a) The curve $y = (p-3)x^2 - 4x + p$ has a minimum point and it cuts the <i>x</i> -axis at two positions of the range of values of p .	ints. [4]
(b) (i) Express $x^2 - 4x + 5$ in the form of $(x - h)^2 + k$.	[1]
(ii) Hence, find the range of values of x if $\frac{x^2-4x+5}{2x^2+2x-40} > 0$.	[2]

10. [Maximum mark: 7]

(a) Given that $\log_5 x = m$ and $\log_5 y = n$, express the following in terms of m and n . (i) $\log_5 xy^2$,	[2]
(ii) $\log_{\frac{x^2}{y^3}} 125$.	[3]
(b) Given that $y = (\log_3 p)x - \frac{1}{4}\log_{\sqrt{3}} p$, where p is a constant and $p > 0$, is a tangent	to the
curve $y = x^2$, find the value(s) of p .	[5]

......[Working may be continued next page]

11. [Maximum mark: 10]

[Continuation of working space for Question 11]

Answer keys

(b)
$$\frac{4a^{12}b^4}{c^6}$$

2(a)
$$m = -4$$

3(a)
$$16\sqrt{3}$$

(b)(i)
$$x = 5$$

(ii)
$$2\sqrt{6}$$
 units

4
$$y = 3, x = 9$$

5(a)
$$y = x + 5$$

- **(b)** The Coordinates of D are (-5, 0).
- (c) 24 units^2

6(a)(i)
$$\frac{4x-3}{x^2+1}$$

(ii)
$$x = \frac{3}{x}$$

(b) $\therefore 1 \le x < 3$, Integers that satisfy the inequality are 1 and 2

7(a)
$$(5-2a+5b)(5+2a-5b)$$

(b)
$$x = -\frac{2}{5}$$
 or $x = 2$

8(a)
$$\alpha + \beta = \frac{3}{2}, \quad \alpha\beta = -2$$

(b)
$$\alpha^2 + \beta^2 = \frac{25}{4}$$

(c)
$$x^2 - \frac{9}{4}x + \frac{5}{8} = 0$$

9(a) By using Pythagoras' Theorem,
$$AB^2 + BC^2$$

$$=11^2+\left(4\sqrt{3}\right)^2$$

$$=121+16(3)$$

$$=13^{2}$$

$$=AC^2$$

Hence, angle ABC is a right angle.

(b)(i)
$$\cos \angle DAC = -\frac{11}{13}$$

(ii)
$$\frac{\tan \angle ACB}{\cos \angle BAC} = \frac{13\sqrt{3}}{12}$$

(c)
$$x = \frac{13\sqrt{3}}{6}$$

10(a)
$$3$$

(b)(i)
$$(x-2)^2+1$$

(ii)
$$x < -5$$
 or $x > 4$

11(a)(i)
$$m + 2n$$

(ii)
$$\frac{3}{2m-3n}$$

(b)
$$p = 1$$
 or $p = 9$