| Candidate Index Number | | | | |------------------------|--|--|--| # Anglo - Chinese School (Independent) ## FINAL EXAMINATION 2023 YEAR 3 INTEGRATED PROGRAMME CORE MATHEMATICS PAPER 1 Friday 29th September 2023 1 hour 30 minutes Candidates answer on the Question Paper. No additional materials are required. #### INSTRUCTIONS TO CANDIDATES - Write your index number in the boxes above. - Do not open this examination paper until instructed to do so. - You are not permitted access to any calculator for this paper. - Answer all questions in the spaces provided. - Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures. - The maximum mark for this paper is 80. | For Examiner's Use | |--------------------| This paper consists of 16 printed pages. [Turn over Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. Answer all the questions in the spaces provided. | (a) Evaluate $\frac{2\frac{3}{4} - \frac{1}{2}}{1 - \frac{1}{4}}$. [2] | |---| | (b) Simplify $\frac{\left(2a^4b^2\right)^3}{14b^{-2}c^6} \div \frac{1}{7\sqrt[4]{b^{-16}}}$, leaving your answer in positive index. [3] | ### 2. [Maximum mark: 4] The graph $y = 2(x-3)^2 + m - 4$ has a minimum point at (3,-8), where m is a constant. (a) Find the value of m. [1] **(b)** Hence, sketch the graph of $y = 2(x-3)^2 + m - 4$. Label the coordinates of the axesintercepts and turning point clearly. [3] (a) Simplify $$\frac{\sqrt{108}}{3} + 18\sqrt{3} - \frac{4\sqrt{27}}{3}$$. [2] | | | 3 | 3 | | |-----|------|---|--|--------------------| | (b) | (i) | Given that the points find the value of x . | s $P(\sqrt{5}, 1)$, $Q(x, \sqrt{5})$ and $R(3\sqrt{5}, 3)$ lie on the same stra | aight line,
[3] | | | (ii) | Find the length of PR | a , in the form $a\sqrt{b}$ units, where a and b are integers. | [2] |[Working may be continued next page] | [Continuation of working space for Question 3] | |--| 4. | [Maximum mark: 5] | |----|---| | | Solve the following simultaneous equations. | | | $\left(\sqrt[3]{5}\right)^{3x} = 125^y$ | | | $\log_3 x^2 + \log_3 y = 5$ | | | [5] | | Given the three points $A(-4, -2)$, $B(3, 2)$ and $C(0, 5)$, find | | |--|-----| | (a) the equation of the line L_1 , which passes through C and is perpendicular to BC , | [2] | | (b) the coordinates of D , the point where L_1 cuts the line $5y-10=2x$, | [3] | | (c) the area of the quadrilateral ABCD. | [3] | **5.** [Maximum mark: 8] | (a) (i) | Express | $\frac{x}{x^2 - 1}$ | $+\frac{3}{x+1}$ | as a single fraction in its simplest form. | [2] | |---------|---------|---------------------|------------------|--|-----| |---------|---------|---------------------|------------------|--|-----| (ii) Hence, solve $$\frac{x}{x^2 - 1} + \frac{3}{x + 1} = 0$$. [1] | (b) Solve $2x-6 < \frac{3(3-x)}{4} \le \frac{-x+4}{2}$ and state all the integers that satisfy the inequality. [5] | |---| [Working may be continued next page] | | [Continuation of working space for Question 6] | |--| 7. | [Maximum mark: 7] | | |----|--|-----| | | (a) Factorise $25 - 4a^2 + 20ab - 25b^2$ completely. | [3] | | | (b) Solve $\frac{32^{x^2}}{16} = 2^{8x}$. | [4] | The roots of the quadratic equation $2x^2 - 3x - 4 = 0$ are α and β . | | |--|-----| | (a) State the value of $\alpha + \beta$ and of $\alpha\beta$. | [2] | | (b) Find the value of $\alpha^2 + \beta^2$. | [3] | | (c) Hence or otherwise, find the quadratic equation with roots $\alpha + \frac{\beta}{2}$ and $\frac{\alpha}{2} + \beta$. | [5] | 8. [Maximum mark: 10] #### 9. [Maximum mark: 9] In triangle ABC, $AB = 11 \,\mathrm{cm}$, $BC = 4\sqrt{3} \,\mathrm{cm}$ and $AC = 13 \,\mathrm{cm}$. BA is produced to D. (a) Explain why angle *ABC* is a right angle. [1] (b) Expressing your answer as a fraction in its simplest form, find (i) $$\cos \angle DAC$$, [1] (ii) $$\frac{\tan \angle ACB}{\cos \angle BAC}$$. [3] (c) Given that E is a point on BC such that EC = x cm and F is a point on AC such that AF is the reflection of AB in the line AE, calculate the value of x, leaving your answer in its simplest form. [4][Working may be continued next page] | [Continuation of working space for Question 9] | |--| (a) The curve $y = (p-3)x^2 - 4x + p$ has a minimum point and it cuts the <i>x</i> -axis at two positions of the range of values of p . | ints.
[4] | |---|--------------| | (b) (i) Express $x^2 - 4x + 5$ in the form of $(x - h)^2 + k$. | [1] | | (ii) Hence, find the range of values of x if $\frac{x^2-4x+5}{2x^2+2x-40} > 0$. | [2] | 10. [Maximum mark: 7] | (a) Given that $\log_5 x = m$ and $\log_5 y = n$, express the following in terms of m and n .
(i) $\log_5 xy^2$, | [2] | |---|--------| | (ii) $\log_{\frac{x^2}{y^3}} 125$. | [3] | | (b) Given that $y = (\log_3 p)x - \frac{1}{4}\log_{\sqrt{3}} p$, where p is a constant and $p > 0$, is a tangent | to the | | curve $y = x^2$, find the value(s) of p . | [5] |[Working may be continued next page] **11.** [Maximum mark: 10] | [Continuation of working space for Question 11] | |---| #### Answer keys **(b)** $$\frac{4a^{12}b^4}{c^6}$$ **2(a)** $$m = -4$$ **3(a)** $$16\sqrt{3}$$ **(b)(i)** $$x = 5$$ (ii) $$2\sqrt{6}$$ units 4 $$y = 3, x = 9$$ **5(a)** $$y = x + 5$$ - **(b)** The Coordinates of D are (-5, 0). - (c) 24 units^2 **6(a)(i)** $$\frac{4x-3}{x^2+1}$$ (ii) $$x = \frac{3}{x}$$ (b) $\therefore 1 \le x < 3$, Integers that satisfy the inequality are 1 and 2 **7(a)** $$(5-2a+5b)(5+2a-5b)$$ **(b)** $$x = -\frac{2}{5}$$ or $x = 2$ **8(a)** $$\alpha + \beta = \frac{3}{2}, \quad \alpha\beta = -2$$ **(b)** $$\alpha^2 + \beta^2 = \frac{25}{4}$$ (c) $$x^2 - \frac{9}{4}x + \frac{5}{8} = 0$$ **9(a)** By using Pythagoras' Theorem, $$AB^2 + BC^2$$ $$=11^2+\left(4\sqrt{3}\right)^2$$ $$=121+16(3)$$ $$=13^{2}$$ $$=AC^2$$ Hence, angle ABC is a right angle. **(b)(i)** $$\cos \angle DAC = -\frac{11}{13}$$ (ii) $$\frac{\tan \angle ACB}{\cos \angle BAC} = \frac{13\sqrt{3}}{12}$$ (c) $$x = \frac{13\sqrt{3}}{6}$$ **10(a)** $$3$$ **(b)(i)** $$(x-2)^2+1$$ (ii) $$x < -5$$ or $x > 4$ **11(a)(i)** $$m + 2n$$ (ii) $$\frac{3}{2m-3n}$$ **(b)** $$p = 1$$ or $p = 9$