JURONG PIONEER JUNIOR COLLEGE 2019 JC2 H2 CHEMISTRY (9729) Preliminary Examination Paper 4 (Suggested Answers)

1 Determination of the identity of the halogen, X, in CH₂XCO₂H

(a) (ii) Titration results

Titration number	1	2
Final burette reading / cm ³	24.90	34.95
Initial burette reading / cm ³	0.00	10.00
Volume of FA3 used / cm ³	24.90	24.95
	✓	✓

(iii) average volume of **FA 3** used ,
$$V_{FA3} = \frac{24.90 + 24.95}{2} = 24.93 \text{ cm}^3$$

(b) (i)
$$n(H_2SO_4)$$
 in 10.0 cm³ of **FA 2** = $2.00 \times \frac{10.0}{1000} = 0.0200$ mol

 $= n(H_2SO_4)$ in 250 cm³ FA 3

$$[H_2SO_4]$$
 in **FA 3** = 0.020 ÷ $\frac{250}{1000}$ = 0.0800 mol dm⁻³

or

Using $c_1V_1 = c_2V_2$,

[H₂SO₄] in **FA 3** =
$$\frac{2.00 \times 10.0}{250}$$
 = 0.0800 mol dm⁻³

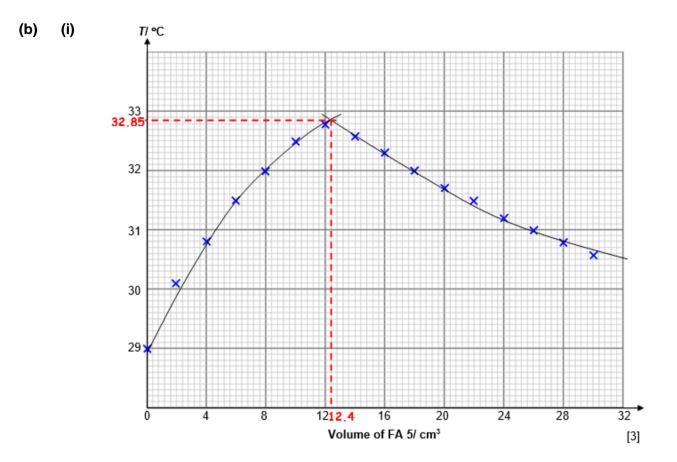
(ii) $n(H_2SO_4)$ reacted in titration = $\frac{24.93}{1000} \times 0.0800 = 0.001996$ mol Since $1H_2SO_4 = 2$ NaOH, n(NaOH) in 25.0 cm³ of **FA 1** = 0.001992 × 2 = 0.00399 mol

(iii) n(NaOH) in 250 cm³ of FA 1
=
$$0.00399 \times \frac{250}{25.0} = 0.0399$$
 mol
= n(NaOH) left unreacted after reaction with W

n(NaOH) added to
$$W = \times 0.40 = 0.100$$
 mol
n(NaOH) reacted with $W = 0.100 - 0.0399 = 0.0601$ mol

(iv) From equation 1 and 2, since $1W \equiv 2NaOH$, n(W) in 4 g = $\frac{1}{2} \times 0.0601 = 0.03004$ mol M_r of W = 4 $\div 0.03004 = 133.2 \approx 133$ (no units)

> A_r of X = 133.2 – 59 = 74.2 (no units) X is bromine/ Br


(c) (i) max. % error in volume of **FA3** used = $\frac{2(\pm 0.05)}{24.95} \times 100 = \pm 0.401$ %

(ii) Error : Mass measurement of W was not precise as the mass was given to nearest g.
Modification : Use a more precise weighing balance that can measure to 3.d.p.
or
Error : Substitution of halogeno group may be incomplete.
Modification : Heat W with NaOH for a longer period of time.
or
Error : Loss of product through heating.
Modification : Heat the reaction mixture under reflux

2 An experiment to investigate the behaviour of acids and bases in aqueous solutions

(a) Determination of the enthalpy change of reaction between FA 4 and FA 5

Total volume of FA 5 added/ cm ³	Maximum temperature/ °C
0.00	29.0
2.00	30.1
4.00	30.8
6.00	31.5
8.00	32.0
10.00	32.5
12.00	32.8
14.00	32.6
16.00	32.3
18.00	32.0
20.00	31.7
22.00	31.5
24.00	31.2
26.00	31.0
28.00	30.8
30.00	30.6

(ii) correctly reads T_{max} to $\pm \frac{1}{2}$ small square + correctly calculates ΔT_{max} + correctly reads $V_{equivalence}$ to $\pm \frac{1}{2}$ small square.

(iii)

(iv) $n(NaHCO_3)$ used = $\frac{25.0}{1000} \times 1.00 = 0.0250$ mol = n(NaOH) reacted

[NaOH] in **FA 5** = 0.0250 ÷
$$\frac{12.4}{1000}$$
 = 2.02 mol dm⁻³

(v) From the graph, $V_{equivalence} = 12.4 \text{ cm}^3$. heat evolved, q = (25.0 + 12.4)(4.18)(3.85) = 603 J $\Delta H_3 = -(603 \times 10^{-3}) \div 0.0250 = -24.1 \text{ kJ mol}^{-1}$

(c) The reaction between FA 4 and FA 2

(d)
$$T_{average} = \frac{(40.0 \times 28.6) + (15.0 \times 28.9)}{(40.0 + 15.0)} = 28.7 \text{ °C}$$

heat absorbed, q = (40.0 + 15.0)(4.18)(28.7 - 28.2) = 115 J

n(NaHCO₃) used = $1.00 \times \frac{40.0}{1000} = 0.0400$ mol Since NaHCO₃ is the limiting reagent, $\Delta H_4 = +(115 \times 10^{-3}) \div 0.0400 = +2.87$ kJ mol⁻¹ (e)

$H^+ + OH^- \rightarrow H_2O$	$\Delta H_{\text{neutralisation}} = -57.0$
$HCO_3^- + OH^- \to CO_3^{2-} + H_2O$	$\Delta H_3 = -24.1$
$H_2O + CO_2 \rightarrow HCO_3^- + H^+$	$-\Delta H_4 = -(+2.87)$

Overall: $2OH^{-}(aq) + CO_2(g) \rightarrow CO_3^{2-}(aq) + H_2O(I) \qquad \Delta H_5$

 $\Delta H_5 = (-57.0) + (-24.1) - (+2.87) = -84.0 \text{ kJ mol}^{-1}$

(g) reaction 3

role of HCO_3^- ions Bronsted acid explanation HCO_3^- is a proton donor (or loses a proton). **reaction 4** role of HCO_3^- ions Bronsted base explanation HCO_3^- is a proton acceptor (or gains a proton).

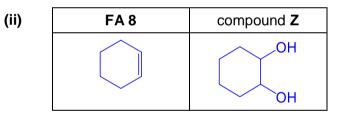
³ Investigation of some reactions involving transition element ions.

		tests	observations	
(a)	(i)	Add one spatula of FA 6 to a hard-glass test-tube. Heat gently for about 10s and then strongly for about 20s. Leave the test-tube and residue to cool completely. Keep the residue for use in 3(a)(ii) . While waiting, you can start on 3(d).	Black residue obtained.	
	(ii)	Add deionised water to a small beaker until it is about half full. Place the beaker on a white tile. Pour the cooled residue from 3(a)(i) slowly into the deionised water in the beaker. Observe the solution closely.	Solid dissolves to form green solution which then turns purple.	
		Swirl the solution and filter a small portion of this solution into a clean test-tube. The filtrate is FA 7 .	Purple filtrate obtained. Dark brown residue obtained.	
	(iii)	Add 1 cm depth of FA 7 to a test-tube. Add $Fe^{2+}(aq)$, slowly with shaking, until no further change is seen.		

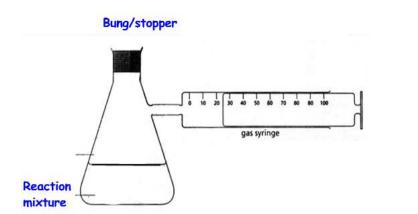
(b) (i) The green solution obtained immediately when water is added to the residue is $MnO_4^{2^-}$.

 $E_{\text{cell}} = E_{\text{red}} - E_{\text{ox}} = (+2.26) - (+0.56)$

= +1.70 V > 0 (energetically feasible)

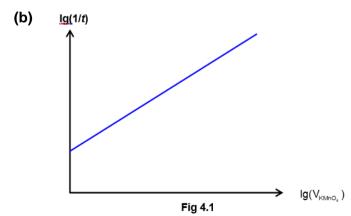

Green MnO_4^{2-} is oxidised to purple MnO_4^{-} and reduced to brown MnO_2 ppt.

(ii) disproportionation


(d)		tests	observations
	(i)	Add 2 cm depth of aqueous sodium hydroxide in a test-tube. Add 5 drops of FA 8 to this test-tube. Add a few drops of aqueous potassium manganate(VII).	Solution turns green. Green solution then turns brown/brown ppt. formed.
	(ii)	Add 2 cm depth of aqueous sulfuric acid in a test-tube. Add 5 drop of FA 8 to this test-tube. Add a few drops of aqueous potassium manganate(VII). Place the mixture in the hot water bath for a few minutes.	Purple FA 9 decolourises.
	(iii)	Add 5 cm depth of deionised water in a test-tube. Add 1 drop of FA 8 to this test-tube. Add aqueous bromine slowly, with shaking, until no further change is seen.	Yellow aqueous bromine decolourises

(e) (i) molecular formula of FA 8 C_6H_{10}

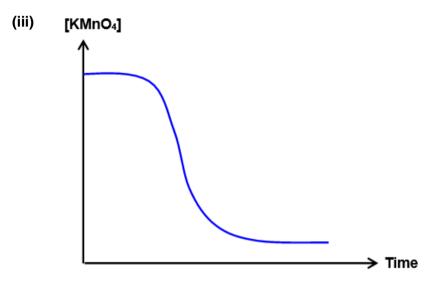
explanation FA 8 undergoes oxidation from alkene to give diol.



- 1. Use a burette to transfer 50.00 cm³ of KMnO₄ into a conical flask.
- 2. Using a 50.0 cm³ measuring cylinder, transfer 50.0 cm³ of H₂SO₄ into the same conical flask. Using a dropper, add 1 cm³ of MnSO₄(aq) to the conical flask.
- 3. Using a 50.0 cm³ measuring cylinder, measure 50.0 cm³ of $Na_2C_2O_4$.
- 4. Transfer the Na₂C₂O₄ to the conical flask and quickly insert the bung into the conical flask. Immediately start the stopwatch and swirl the conical flask.
- 5. Record time taken using stopwatch when 40 cm³ of gas is collected in the gas syringe.
- 6. Repeat steps 1 to 5 for 4 other experiments, using the volumes as shown in the table below. Measure deionised water using a measuring cylinder.

Expt	Vol KMnO4 /cm ³	Vol deionised water/cm ³	Vol H ₂ SO ₄ /cm ³	Vol Na ₂ C ₂ O ₄ /cm ³	Vol Mn ²⁺ /cm ³	t/s
1	50.00	0.0	50.0	50.0	1	
2	40.00	10.0	50.0	50.0	1	
3	30.00	20.0	50.0	50.0	1	
4	20.00	30.0	50.0	50.0	1	
5	10.00	40.0	50.0	50.0	1	

Rate = k'[KMnO₄]^a


Since rate $\propto 1/t$ and [KMnO₄] $\propto V_{KMnO4}$ since total volume is kept constant,

 $1/t = \mathcal{K}(V_{KMnO4})^a$

 $lg(1/t) = lg \ k' + a \ lg(V_{KMnO4})$

 $lg(1/t) = a lg(V_{KMnO4}) + lg k'$ which is similar to a y = mx + c straight line graph

- (c) Gradient of the line = order of reaction
- (d) (i) The reaction is slow as it has high activation energy due to the repulsion between both the negatively charged MnO_4^- and $C_2O_4^{2-}$.
 - (ii) Homogenous catalyst since $Mn^{2+}(aq)$ is in the same phase as the reactants.

