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Mathematical Formulae 

   

1. ALGEBRA 
    

Quadratic Equation 
   

  For the equation 02  cbxax , 
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where n is a positive integer and 

   
!

11

)!(!

!

r

rnnn

rnr

n

r

n 











 
 

 

 

2. TRIGONOMETRY 
 

Identities 
 

sin2 A + cos2 A = 1 
 

sec2 A = 1 + tan2 A 
 

cosec2 A = 1 + cot2 A 
 

sin(A  B) = sin A cos B cos A sin B 
 

cos(A  B) = cos A cos B sin A sin B 
 

BA

BA
BA

tantan1

tantan
)tan(




  

 

sin 2A = 2 sin A cos A 
 

cos 2A = cos2 A  sin2 A = 2cos2 A  1 = 1  2sin2 A 
 

A

A
A

2tan1

tan2
2tan


  

 

Formulae for ABC 
 

C

c

B

b

A

a

sinsinsin
  

 

a2  =  b2 + c2 – 2bc cos A 
 

 
1

sin
2

bc A    
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1 (i) Differentiate   2 13 xxe     with respect to x. [2] 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

 (ii) Hence find   
2 19 d .xxe x

  [3] 
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2       (i)      Prove that    
2

2

1 tan cos sin

sec 2 tan cos sin

  

   

 


 
. [4] 
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 (ii) Hence solve the equation   2 21 tan 2sec 4 tan       for 180 180 .      [4] 
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3           (i)      Show that   x a    is a factor of   3 2 2 32 3 3 2x ax a x a      where a is a constant. [1] 

    

    

    

    

    

    

    

    

    

    

 
(ii) Express   

3 2 2 3

3

2 3 3 2x ax a x a  
  as the sum of three partial fractions. [7] 
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4 (a) Express    3 32log 2 log 3x x      as a quadratic equation in x and explain why there   

  are no real solutions. [4] 

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

 (b) Without using a calculator, solve the equation     ln ln 2 2x x         using the 

substitution lny x . [3] 
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5 (a) Find the values of x and y which satisfy the equations  

    

 
4

1
2

16

x y  , 
 

 1

35 1

25 5

x

y





 
  
 

. 
[4] 
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 (b)   A trapezium of area   2 15 3  cm2 has a perpendicular height of    2 4 3  cm and the  
 

        length of one of the parallel sides of   2 3   cm. Without using a calculator, obtain an  

        expression for the length of the other parallel side in the form    3a b , where a and b are  

        integers.                                                                                                                                       [5] 
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6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 The diagram shows two circles C1 and C2.  

The equation of circle C1, with centre B,  is   2 2 8 84 0x y y    .         

The tangent to circle C1 at the point A has a gradient of 
4

3
 .  

Circle C2 has diameter AB.  

 

 

    

 (i) Find the radius of circle C1 and the coordinates of its center. [2] 
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 (ii) Find the coordinates of A. [4] 

     

     

     

     

     

     

     

     

     

     

     

     

    

     

     

     

     

     

     

     

     

     

     

     

     

     

 (iii) Find the equation of another circle C3 which is a reflection of circle C2 about the y-axis. [3] 
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7  f x  is such that    f " 2 2 2cos 2x x x    . Given that  f ' 1
4 2

  
    
 

  and   
3

f 0
2

 ,  
 

 
show that   

3 2 10
f

2 96 4

    
  

 
. [9] 
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8(a)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 The diagram shows part of a straight line graph which passes through  2,1  and  4,3 .   

 
Find the equation of the straight line in the form   

x
y

a b x



, where a and b are constants.  

[3] 

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     
 

O   

  

 

 



14 
 

[Turn over 

8(b)   The mass, m grams, of a certain bacteria, t hours after observations began, are recorded in the table  

          below.  

 

 
t (hours) 2 4 6 8 10 

m (grams) 7.39 20.09 54.60 148.41 403.43 
 

 

   

    

    

 (i) On the grid below plot  ln m   against t and draw a straight line graph. [2] 
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 (ii) Find the gradient of your straight line and hence express m in the form   ktAe , where   

  A  and k are constants [4] 

     

     

     

     

     

     

     

     

     

     

     

    

     

     

     

     

     

     

     

     

     

     

     

     

     

    

     

   

     

    

     

 (iii) Estimate the time taken for the bacteria to gain ten times its original mass. [3] 

     

     

     

     

     

     

   

    

     

     

     

     

     

     

     

     



16 
 

[Turn over 

9  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The diagram shows part of the curve   10 6y x      meeting the x-axis at the point A.       

The line   1x      intersects the curve at the point B. The normal to the curve at B meets the  

x-axis at the point C. 

 

    

 Find the area of the shaded region. [11] 
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Continuation of working space for Question 9. 
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10   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The diagram shows a vaccination facility in the shape of a quadrilateral in which angles PQT, 

PTS and PRS are right angles. SU is parallel to PR. The lengths of PT and ST are 10 m and 4 m 

respectively. The acute angle QPT is   radians. 

 

    

 (i) Show that the perimeter, W m, is given by   14 14sin 6cosW     . [2] 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

 (ii)      Find the value of R when   14sin 6cos    is expressed as  sin ,R   where R and  

            are constants  and hence state the maximum perimeter of the vaccination facility. [3] 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

P Q R 

S 

T 

U 

 

10 m 

4 m 
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 (iii) Section QRST will be converted into a quarantine facility. Show that the area of the   

  quarantine facility, A m2, is given by   240sin 4sin 2 .A     [2] 

    

    

    

    

    

    

    

    

    

    

    

    

 (iv) Given that   can vary, find the value of   which gives a stationary value of A and    

  determine the nature of this stationary value. [5] 
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Qn No Working 

1(i) 
 2 1 2 1 2 1d
3 3 6

d

x x xxe e xe
x

     

1(ii) 
2 1 2 1 2 19 9

9 d
2 4

x x xxe x xe e c      

2(ii) 2 21 tan 2sec 4 tan

1
tan

3

18.43

18.4 ,161.6

  

 

 

   

  







 

3(i)  

 

 

3 2 2 3Let  f 2 3 3 2

Remainder f 0

Since the remainder is 0, by Factor theorem,  is a factor of f .

x x ax a x a

a

x a x

   

  



 

(ii) 

     3 2 2 3 2 2 2

3 1 4 1

2 3 3 2 3 3 2 3 2x ax a x a a x a a x a a x a
  

     
 

4(a)  

    

3 3

2

22

2

2log 2 log 3

9 27 0

4  = 9 4 1 27

81 108

27 0

Since 4 0,  there are no real solutions. 

x x

x x

b ac

b ac

  

  

  

 

  

 

 

4(b) 2   or   x e x e   

5(a) 5 4
,

9 9
x y    

5(b) Let the other base be b, 

6 2 3b   

6(i) 
Centre is  

8
0, 0, 4

2

 
  

 
 

Radius    
220 4 84 10 units       

6(ii)  coordinates of  is 8, 10A    

(iii) 
Radius of C3 

10
5 units

2
   

Centre of circle C2 

 

0 8 4 10
,

2 2

4, 7

     
   

  

  

 

Centre of circle C3  4, 7  
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   
2 2 2

2 2

4 7 5

or

8 14 40 0

x y

x x y y

   

    

 

7 
 

 

2
2

3 2
2

3 2

f 2 sin 2
16

cos 2
f 2

3 2 16

10
f

2 96 4

x x x x

x x
x x x

     

     

 
  

 





  

 

8a 

1

x
y

x

 

 

8b(i) Refer to attached graph 
8b(ii) 1

,
2

A e k   

8b(iii) the time taken is about 4.6 0.1 hours  

9 

 

 

   
5

3

1

2

5
,0

3

1, 4

d 3

d 10 6

d 3
at ,

d 4

Equation of normal at :

4 16

3 3

4,0

Area of shaded region

1
10 6  d 1 4 4

2

118
 units

9

A

B

y

x x

y
B

x

B

y x

C

x x


 
 
 

 






  



       





 

10(i) 

10sin 4cos

10 4 10sin 4cos 4sin 10cos

14 14sin 6cos

UTS

RS QT UT

W PT TS RS QR PQ



 

   

 

 

 

 

    

     

  

 

10(ii) R = 2 58          

Max 29.2 mW   
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10(iii) 240sin 4sin 2A     

10(iv) 2

2

2

2

2

40sin 4sin 2

d
40sin 2 8cos 2

d

0.0987

d
80cos 2 16sin 2

d

d
81.5843 0

d

0.0987 gives a minimum Area.

A

A

A

A

 

 



 

 

 

 

 




 






 

 

 

 

 


