Oscillations

Simple Harmonic Motion (Free Oscillations) – Displacement of the object is proportional to its acceleration, with the acceleration pointing towards the equilibrium position.

SHM Quantities and their variations with respect to displacement and time.

Quantity	Variation w.r.t Displacement		Variation w.r.t Time	
	Equation	Graph	Equation	Graph
Acceleration Max. acceleration	$\begin{aligned} \mathbf{a} &= -\omega^2 \mathbf{X} \\ \mathbf{a}_0 &= \left \omega^2 \mathbf{X}_0 \right \end{aligned}$	acceleration a $a_0 = \omega^2 x_0$ displacement $a_0 = x_0$ $a_0 = \omega^2 x_$	$a = \mp a_0 \sin(\omega t)$ $a = \pm a_0 \cos(\omega t)$	a_{o}
Velocity Max. velocity	$\mathbf{v} = \pm \omega \sqrt{\mathbf{x}_0^2 - \mathbf{x}^2}$ $\mathbf{v}_0 = \omega \mathbf{x}_0$	$velocity v$ $v_0 = \infty x_0$ $displacement$ x_0 $v_0 = -\infty x_0$	$v = \pm v_0 \cos(\omega t)$ $v = \mp x_0 \sin(\omega t)$	
Displacement	N.A	N.A.	$x = \pm x_0 \sin(\omega t)$ $x = \pm x_0 \cos(\omega t)$	
Kinetic Energy	$E_k = \frac{1}{2}m\omega^2\left(x_0^2 - x^2\right)$	energy	$E_{k} = \frac{1}{2}mv_{o}^{2}\cos^{2}(\omega t)$ $E_{k} = \frac{1}{2}mv_{o}^{2}\sin^{2}(\omega t)$	
Potential Energy	$E_{\rho} = \frac{1}{2}m\omega^2 x^2$	Etotal -X ₀ 0 X ₀ X	$E_{p} = \frac{1}{2} m v_{o}^{2} \sin^{2}(\omega t)$ $E_{p} = \frac{1}{2} m v_{o}^{2} \cos^{2}(\omega t)$	energy E_{total} E_{K} $0 \qquad \frac{1}{2} T \qquad T$ time
Total Energy	$TE = E_{k,max} = E_{p,max}$ $= \frac{1}{2}m\omega^2 x_0^2$		Constant value throughout time	
Angular Frequency	$\omega = \frac{\Delta \theta}{\Delta t} = \frac{2\pi}{T} = 2\pi f$	Period, <i>T</i> Frequency, <i>f</i>	$f=rac{1}{T}$	

Types of Damped Oscillations	Graphs	
 Light Damping or Underdamped Still oscillating (negative and positive <i>x</i>) Period is more than undamped case, but remains constant throughout oscillation 	displacement r_1 r_2 r_3 r_4 r_5 r_6 r_7 $r_$	Heavier damping time
 Heavy Damping or Overdamped Takes a long time (or never) reach equilibrium 		
Critical DampingReturns to equilibrium in the fastest possible time	Use for 1. Car S 2. Anale 3. Door	Suspensions og meters · closers

Damped Oscillations – Loss of total energy gradually with time \rightarrow Amplitude decreases

Resonance – When driving frequency matches the natural frequency, maximum energy is transferred to the system, hence system oscillate at the maximum amplitude.

