Name	Reg. No	Class
	1 1	

4E/5N

MATHEMATICS

4048/01

Paper 1 [80 marks]

PRELIMINARY EXAMINATION

24 August 2022

2 hours

Candidates answer on the question paper

READ THESE INSTRUCTIONS FIRST

Do not open this booklet until you are told to do so.

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer ALL questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 80.

Write the brand and model of your calculator in the space provided below.

	For Ex	aminer's Use
Brand/Model of Calculator	Total	80

This question paper consists of 17 printed pages and 1 blank page.

BP~255

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle ABC =
$$\frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

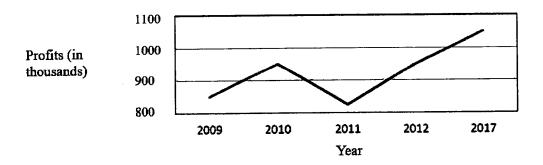
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1 Simplify the following expressions, leaving your answers in positive index.


$$(a) \qquad \left(-a^2\right)^3 \div 4b^0$$

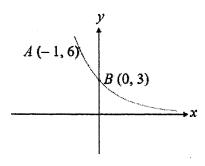
Answer[2]

(b)
$$\left(a^{-1}b\right)^2 \times \left(\sqrt{b}\right)^3$$

Answer[2]

2 The line graph shows the profits that a company has made over a few years.

State two ways in which the line graph may be misleading.


- 3 The volume of an Olympic size swimming pool is 660 000 gallons. 1 gallon is approximately 3790 cm³.
 - (a) Convert 660 000 gallons to cm³, leaving your answer in standard form.

Answer cm³ [1]

(b) The average volume of water flowing from tap A and tap B are 8×10^2 litres per minute and 1.2×10^3 litres per minute respectively. Both taps are used to fill up the Olympic size swimming pool together. Calculate the time needed to fill up the pool completely.

Answer minutes [2]

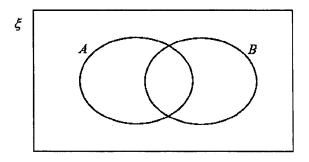
4 The sketch shows the graph of $y = ka^{-x}$. The points A(-1, 6) and B(0, 3) lie on the graph.

Find the value of k and of a.

Answer $k = \dots$

 $a = \dots [2]$

5	(a)	Express 1400 as a product of its prime factors.
		Answer[1]
	(b)	Hence, explain why 1400 is not a perfect square.
	Ansv	wer
		[1]
	(c)	a and b are both prime numbers. Find the value of a and of b such that $1400 \times \frac{a}{b}$ is a perfect cube.
		Answer $a = \dots$
		$b = \dots \qquad [2]$
6	A lak	te has an actual area of 2.56 km ² . It is represented by an area of 4 cm ² on a map.
	(a)	Find the scale of the map in the form $1:n$.
		Answer 1:[2]
	(b)	The distance between two towns on the map is 20 cm. Find the actual distance, is kilometres, between the two towns.
		Answerkm [1]


7
$$\xi = \{\text{integers } x: 1 \le x \le 12 \}$$

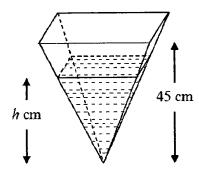
 $A = \{\text{integers } x: 1 - 2x > -9 \}$
 $B = \{\text{prime numbers}\}$

(a) List the elements in $A \cap B'$.

Answer	 [1]

(b) On the Venn diagram, shade the region which represents $A' \cup B$.

Answer



[1]

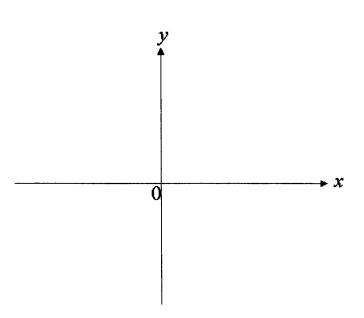
8 The mass, M grams, of a cylindrical clay is directly proportional to the cube of its radius, r centimetres. The mass of the cylindrical clay is increased by 700%. Calculate the percentage increase in the radius of the cylindrical clay.

Answer % [2]

9 The diagram shows a right pyramid of height 45 cm.

The volume of the liquid in the pyramid is half the volume of the pyramid. Calculate the depth, h cm, of the liquid.

Answer	cm	[2]
--------	----	-----

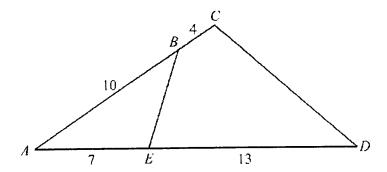

10 (a) (i) Express $x^2 - 4x + 8$ in the form $(x + p)^2 + q$.

(ii) Hence explain why there is no solution for $x^2 - 4x + 8 = 0$.

Answer	
	 [1]

(b) Sketch the graph of y = (3-x)(x+5) on the axes below. Indicate clearly the values where the graph crosses the axes and the coordinates of the turning point.

Answer



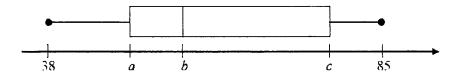
[3]

11 Given $x^2 - 8xy + 16y^2 = 0$, find the value of $\frac{x}{y}$.

Answer

12 In the diagram, ACD is a triangle. B is the point on AC such that AB = 10 cm and BC = 4 cm. E is the point on AD where AE = 7 cm and ED = 13 cm.

(a) Show that ACD and AEB are similar.


Answer	
	 [2]

(b) F is the point on AB such that $\frac{\text{Area of } AEF}{\text{Area of } AEB} = \frac{1}{4}$. Find the length of AF.

13 The stem-and-leaf diagram shows the test scores of the boys and girls from a particular class.

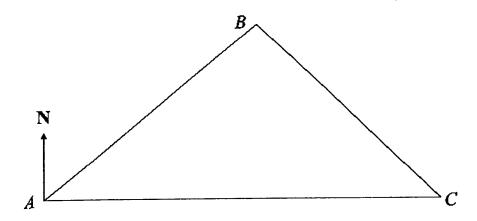
		Bo	ys				Gi	rls		
			-	8	3					
					4	1	2	4		
8	4	4	2	0	5	0	3	6	7	
				7	6	3	5	9		
		5	4	2	7	3	4	6	7	
				5	8					
	Key (Boys)	ı		•	•		Key ((Girls)	
8	3	mea	ns 38				4	1	means 4	.1

(a) Alvin represented the boys' test scores on a box-and-whisker plot below.

Find the values of a, b and c.

(b) Alvin realised that he forgot to record one boy's test score. After recording this boy's test score, the median of the boys' score remains unchanged. Write down the possible score for this boy.

(c) Alvin wants to measure the consistency of the class's test scores. He claims that the standard deviation is a more accurate measure, compared to the interquartile range. Justify why this claim is valid.


Answer	
	 [1]

14 (a) Factorise $-2x^2 + x + 3$.

Answer	 [1]

(b) Factorise completely $8x^3 - 18xy^2$.

15 The diagram shows an accurate drawing of triangle ABC.

- (a) By constructing appropriate lines on the diagram, mark the point P on AB such that P is equidistant from AC and BC. [2]
- (b) Write down the bearing of P from A.

4	0	Г1
Answer		LT.

16	The matrix A below shows the prices of football match tickets for seats in Category 1 (Cat 1),
	Category 2 (Cat 2) and Category 3 (Cat 3). The prices are given in dollars.

$$\mathbf{A} = \begin{pmatrix} \text{Cat 1} & \text{Cat 2} & \text{Cat 3} \\ 80 & 42 & 20 \\ 120 & 62 & 30 \end{pmatrix} \quad \begin{array}{c} \text{Semi-final} \\ \text{Final} \end{array}$$

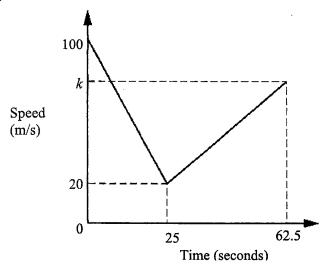
(a)	There are 3	300	Cat 1	seats,	500	Cat	2 seats	and	1000	Cat 3	seats.	Represent	this
	information	in a	a 3×1	matrix	, B .							_	

Answer
$$\mathbf{B} = \dots$$
 [1]

(b) Evaluate the matrix $X = (0.5 \ 0.5) AB$.

Answer
$$X = \dots [2]$$

(c) State what the element of X represents.


Answer

.....

17	A regular polygon has n sides. When the number of sides is doubled, each of the interior angles
	is increased by 30° . Find the value of n .

			Answer	<i>n</i> =	[3]
18	Show that	$(2n-1)^2 + 3$ is a multiple of 4 for all	l integer val	ues of n.	
	Answer				
					[2]

19 The diagram shows the speed-time graph of a train for the first 62.5 seconds after entering a tunnel.

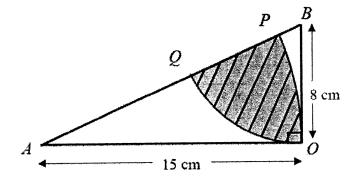
(a) Find the speed of the train 20 seconds after entering the tunnel. Give your answer in kilometres per hour.

Answer	km/h	[3]
--------	------	-----

(b) Calculate the distance travelled by the train for the first 25 seconds after entering the tunnel.

(c) The deceleration of the train for the first 25 seconds after entering the tunnel is twice the acceleration of the train after 25 seconds in the tunnel. Find the value of k.

Answer
$$k = \dots$$
 [2]


20	P is the	e point $(3,-1)$ and Q is the point $(-5, 5)$.			
	(a)	Find $ \overline{PQ} $.			
		A	nswer	$ \overline{PQ} = \dots units$	[2]
	(b)	The line PQ intersects the x-axis at R . Find	the coord	linates of point R.	
		A	Inswer	$R = (\ldots, \ldots)$	[2]

21 The body mass index, BMI, of a person is defined as $\frac{\text{mass in kg}}{\text{(height in metres)}^2}$. Over two years, Jay's mass decreased by 0.8% and his height increased by 2%. Find the percentage change in Jay's BMI.

Answer % [3]

			16
22	A bag	g contain	ns 150 chips. There are 60 blue chips, x red chips and y green chips in the bag.
	The p	robabili	ity of drawing a red chip is $\frac{7}{30}$.
	(a)	Find 2	x and y .
			Answer $x = \dots$
			<i>y</i> =[2]
	(b)	n yell	ow chips are added into the bag.
		(i)	The probability of choosing two yellow chips with replacement is $\frac{1}{256}$. Write
			down an equation in n to represent this information and show that it simplifies to $17n^2 - 20n - 1500 = 0$.
		Ans	swer
			F23
			[3]
		(ii)	Solve the equation $17n^2 - 20n - 1500 = 0$ to find the number of yellow chips added into the bag.
			Answer
			[Turn over

23 The diagram shows a right-angled triangle AOB where AO = 15 cm and BO = 8 cm. P lies on AB such that OP is an arc of a circle with centre A. Q lies on AB such that OQ is an arc of a circle with centre B.

(a) Show that angle ABO is 1.0808 radians, correct to 4 decimal places.

Answer

[1]

(b) Find the area of the shaded region.

END OF PAPER

Name	Reg. No	Class

4E/5N

MATHEMATICS

4048/02

Paper 2 [100 marks]

PRELIMINARY EXAMINATION

22 August 2022

2 hours 30 minutes

Candidates answer on the Question Paper

READ THESE INSTRUCTIONS FIRST

Do not open this booklet until you are told to do so.

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer ALL questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 100.

Write the brand and model of your calculator in the space provided below.

	For Examiner's Use
Brand/Model of Calculator	Total 100
This question paper consi	sts of 20 printed pages and 2 blank pages.

Mathematical Formulae

Compound interest

Total Amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere = $\frac{4}{3}\pi r^3$

Area of triangle $ABC = \frac{1}{2}ab \sin C$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

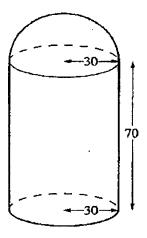
$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

3 **Answer all the questions**

1 (a) Given
$$\frac{(3x-y)}{(x+2y)} = \frac{1}{3}$$
, find the ratio $x : y$.

(b) Solve the inequality
$$\frac{2-3x}{3} < \frac{2x-1}{6}$$
.


(c) Given that
$$\frac{1}{x} + \frac{1}{y^2} = \frac{1}{w-3}$$
, express y in terms of x and w.

Answer
$$y = \dots$$
 [3]

		4	
2	(a)	The marked price of a mobile phone is \$1288. After selling the mobile phone at 15% discount, the shop owner still makes a profit of 25% on its cost price. Find the cost price of the mobile phone.	
		Answer \$	[3]
	(b)	The selling price of a desktop computer is \$2388. The hire purchase price is a deposit of \$295 and 18 equal monthly payments of \$125 per month. Calculate the simple interest rate per annum.	
		Answer%	[3]
	(c)	The value of a laptop depreciated from \$2000 in 2016 to \$1200 in 2020. If the price depreciated by x % every year, find the value of x .	

Answer $x = \dots$ [3]

A hot water tank is made by joining a hemisphere of radius 30 cm to a cylinder of radius 30 cm and height 70 cm.

(a) Calculate the total surface area of the water tank.

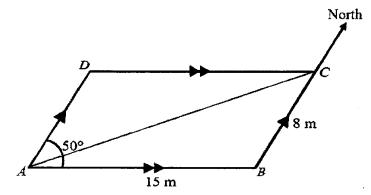
Answer	cm ²	[3

- (b) The tank is filled with water completely.
 - (i) Calculate the number of litres of water in the tank.

Answerlitres [3]

3 (b) (ii) The water drains from the tank at a rate of 3 litres per second.

Calculate the time, in minutes and seconds, taken to empty the tank.


Answer	 minutes	seconds	[2]

0.6 0.3

All the water from the tank fills a bath completely. The bath is a prism whose cross-section is a trapezium. The lengths of the parallel sides of the trapezium are 0.4 m and 0.6 m. The depth of the bath is 0.3 m. Calculate, in metres, the length of the bath.

4nswer	m	[3]

The diagram shows a parallelogram ABCD on horizontal ground where AC is a path. AB = 15 m and BC = 8 m. The bearing of B from A is 050° .

(a) Find the area of the parallelogram ABCD.

Answer	m²	Г21
11.00,,0,		

(b) Find the length of the path AC.

(c) Find angle DAC.

4 (d) Find the bearing of A from C.

Answer		[1]
--------	--	-----

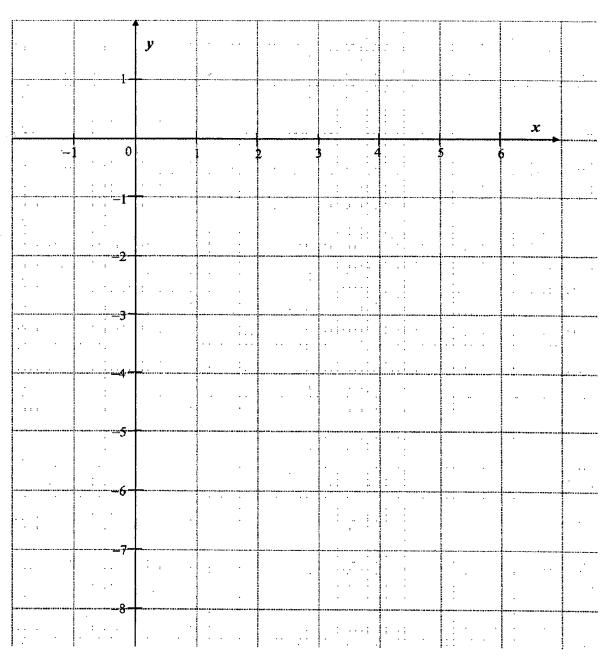
A vertical pole is erected at B. T is the top of the pole. The angle of elevation of T from A is 15° .

(e) Find the height of the pole.

(f) The angle of elevation of T from any point along AC is given by θ . Find the range of θ .

Answer°
$$\leq \theta \leq$$
 [4]

10


5 The table shows some values for $y = 4 - 2x - \frac{5}{x}$ for $0.5 \le x \le 5.5$.

x	0.5	1	1.5	2	2.5	_ 3	3.5	4	4.5	5	5.5
У	-7	-3	-2.3	-2.5	-3	p	-4.4	-5.3	-6.1	-7	-7.9

(a) Find the value of p, correct to one decimal place.

Answer
$$p = \dots [1]$$

(b) On the grid, draw the graph of
$$y = 4 - 2x - \frac{5}{x}$$
 for $0.5 \le x \le 5.5$. [3]

E	(0)	Use your graph to find the solutions of the equation	$2x + \frac{5}{1} = 8$
3	(0)	Obe Jour Bruhm to amend the same	\boldsymbol{x}

Answer
$$x =$$
 or [2]

(d) The gradient of the curve at point A is 3. Use your graph to determine the coordinates of A.

Answer
$$A = (.....)$$
 [2]

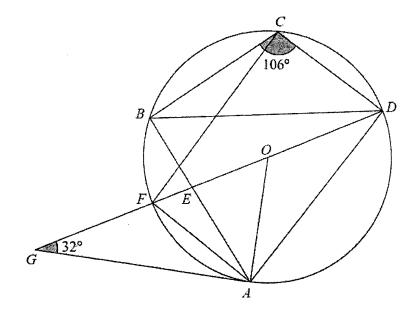
(e) By adding a suitable straight line to the grid in part (b), find the solutions to the equation $3x^2 - 14x + 10 = 0$.

Answer
$$x =$$
 or [4]

6 The table below shows a flooring consisting of square tiles measuring 1 m² each. Each day similar tiles are added to the previous pattern.

	b []		
Number of days	Day 1	Day 2	Day 3
Area added (m²)	1	5	9
Length, /(m)	1	3	5
Breadth, b (m)	1	2	3

(a) (i) Find an expression, in terms of n, for the area added on Day n.


	Answerm ²	[1]
(ii)	Find the area added on Day 20.	
	Answerm²	[1]
(iii)	Explain why the area added is always odd. Answer	
		[1]

(b) (i) Find the total area of the flooring on Day 6.

Answer	\cdots	[1]
--------	--	-----

6	(b)	(ii)	Find an expression for the total area of the flooring in the form of $an^2 + bn$, on Day n .	
				ron
		(iii)	Answer Determine if an area of 780 m² of flooring can be completed in 3 weeks.	[2]
		Ansv	ver	
		••••		Г 2 1

In the diagram, O is the centre of the circle. DOEFG and AEB are straight lines and GA is a tangent to the circle at A. Angle $AGD=32^{\circ}$ and angle $BCD=106^{\circ}$.

Find, giving reasons for each answer,

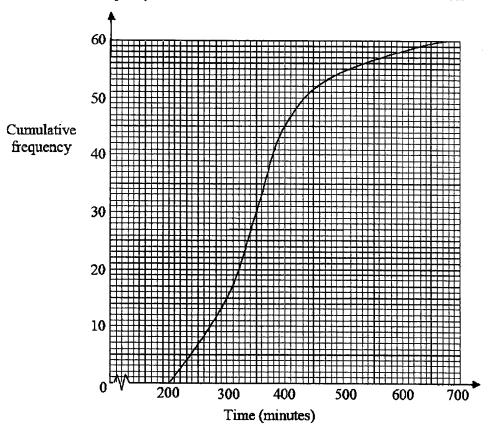
(a) angle GOA,

Answer	0	[2]
answer	************	141

(b) angle BCF,

Answer	 [2]

7 (c) angle BDA	ι,	,
-------------------	----	---


Answer° [2]

(d) angle DEA.

Answer° [2]

8 (a) The time spent by 60 students on social media in a week is recorded.

The cumulative frequency curve below shows the distribution of the data collected.

(i)	Use the curve to estimate
	(a) the median

Answer		[1]
--------	--	-----

(b) the interquartile range.

(ii) 20% of the students spent at least x minutes on social media in a week. Find the value of x.

(iii) Another group of 60 students was found to have the same median but a larger interquartile range. Sketch a possible cumulative frequency curve to represent this distribution on the above grid.

[1]

8 (b) The table below shows the average amount of time (in minutes) spent daily on social media by a group of 240 students.

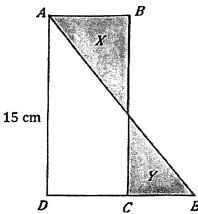
Time spent	(x minutes)	$20 < x \le 40$	$40 < x \le 60$	$60 < x \le 80$	$80 < x \le 100$
Frequency	Boys	15	58	22	5
	Girls	8	30	62	40

	One of these students is selected at random. Find, as a fraction in its lowest terms, the probability that the student
--	---

(a)	is a girl w	ho spent	at most 60	minutes of	on social	media	in a d	lay

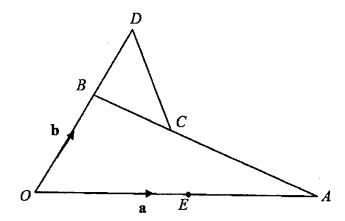
	Answer		[1]
(b)	spent more than 80 minutes on soci	al media in a day.	
	Answer		[1]

ľ	I wo students were selected at random. Find the probability that at least one of them spent less than or equal to 40 minutes on social media in a day.
---	---


	rol
Answer	 [2]

9 (a) The figure shows a rectangle ABCD with AD = 15 cm.

E is on DC produced such that DE = 8 cm.


The area of shaded part X is 12 cm² more than the area of shaded part Y.

Find the length of AB.

8 cm

9 **(b)** OAB is a triangle and C is a point on AB such that AC : CB = 2 : 1. The side OB is produced to the point D such that OB : BD = 3 : 2. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(i) Express \overline{OC} in terms of **a** and **b**, as simply as possible.

Answer[2]

			19	
9	(b)	(ii)	Express \overrightarrow{CD} in terms of a and b , as simply as possible.	
			Answer	[2]
			5	
		(iii)	E is the point on OA such that $\overrightarrow{OE} = \frac{5}{9} \mathbf{a}$.	
			Show that D , C and E lie on a straight line.	
			Answer	[3]
			Write down the ratio $\frac{\text{area of triangle } OEC}{\text{area of triangle } OCD}$.	
		(iv)	write down the ratio area of triangle OCD	
			Answer	[1]
			Area of triangle EAC	
		(v)	Write down the ratio $\frac{\text{Area of triangle } EAC}{\text{Area of triangle } OAB}$.	
			Answer	[1]

Mr Tan designed two computer models X and Y. Both have the same manufacturing cost. Mr Tan engaged his existing client Mr Chew to find out which model is more likely to sell. Mr Chew sent a survey to 1000 random customers, with the photos, price and specifications for each model.

Question 1	I will buy Model X.	SD	D	N	A	SA
Question 2	I will buy Model Y.	SD	D	N	A	SA

SD = Strongly Disagree, D = Disagree, N = Neutral, A = Agree and SA = Strongly Agree.

Mr Chew prepared the following report. Unfortunately, coffee spilled on the report before Mr Tan could read it. Mr Tan decided to figure out the missing information.

Points allocated for each type of response	Model X	Model Y
SD = 1	7	5
$\mathbf{D} = 2$	16	31
<u>N = 3</u>	628	14_
<u>A = 4</u>	347	
SA = 5	2	
n	1000	1000
Mean of points		1.907
Standard Deviation of points		1.611

(a) Assuming that Mr Tan has done all his calculations correctly, what are the mean and the standard deviation for Model X? Give your answers to 3 decimal places.

Answer	mean =	[1]
	standard deviation =	[1]

(b) By comparing the means for both models, which model should Mr Chew recommend Mr Tan to produce? State your reason clearly.

Answer [1]

21

10 (c) Mr Tan became troubled with the high standard deviation for Model Y, so he decided to find the missing values for SD, A and SA for Model Y. Help Mr Tan calculate the missing information.

Answer	missing values for	SD	=, A	=,	SA =	[5]	
--------	--------------------	----	-------------	----	-------------	-----	--

(d) With all the information available now, which model should Mr Tan produce? State your reason clearly.

Answer [2]

4Exp E Math Prelim 2022 Paper 1 Marking Scheme

1447 HOWER		M	KA	FLOWER
------------	--	---	----	--------

Qn	Solution	Mark
la	$\left(-a^2\right)^3 \div 4b^6 = -a^6 \div 4$	B1 for $-a^{\sharp}$
	$=-\frac{1}{4}a^6$	A1
	$=$ $-\frac{1}{4}a$	
1b	3	1
10	$(a^{-1}b)^{2} \times (\sqrt{b})^{3} = a^{-2}b^{2} \times b^{\frac{3}{2}}$	B1 for $a^{-1}b^2$ or $b^{\frac{3}{2}}$
	$=\frac{b^{\frac{7}{2}}}{\sigma^2}$	
	$=\frac{1}{a^2}$	A1
2	The vertical axis does not start from zero.	B1
	The increase in the number of years on the horizontal	BI
	axis is not a constant.	Ignore any subsequent explanations
		given by students
3a	2.5014×10 ⁸ cm ³	B1 (exact ans only)
3b	Time needed	their (a)
	2.5014×10°	M1 for $\frac{\text{their (a)}}{(8 \times 10^3 + 1.2 \times 10^3) \times 1000}$
	$= \frac{(8 \times 10^2 + 1.2 \times 10^3) \times 1000}{(8 \times 10^2 + 1.2 \times 10^3) \times 1000}$	
	=1250.7 minutes	Al (exactrans only)
4	$y = ka^{-x}$	is 1
	$3 = ka^{-6}$	
	k=3	B1
	6 = 3(a*)	
	a = 2	B1
5a	$1400 = 2^3 \times 5^2 \times 7$	B1
5b	Not all the index / power of the prime factors of 1400	B1
	are even numbers.	
5c	a=5	B1
	b = 7	B1

ia l	Area = 4 cm^2 : 2.56 km ²	
a	Length = $2 \text{ cm} : 1.6 \text{ km}$	M1 for finding length ratio in any
	= 1 cm : 0.8 km	units
	= 1:80000	A1
6b	Actual distance = 16 km	B1
7a	$A = \{1, 2, 3, 4\}$	
	$B = \{2, 3, 5, 7, 11\}$	D1
	$A \cap B' = \{1, 4\}$	B1
7b	<i>λ</i> ₂	B1
8	$M = kr^3$	
	$k = \frac{M}{r^3}$	
	$\operatorname{new} M = k(\operatorname{new} r)^3$	
	$8M = \frac{M}{r^3} (\text{new } r)^3$	M1 for relationship between new
		and old sets of values of M and r
	$(\text{new } r)^3 = 8r^3$	
	new r = 2r	A1
	% increase in $r = 100\%$	
	OR	
	$\frac{M_1}{(r_1)^3} = \frac{M_2}{(r_2)^3}$	
	$\frac{M_1}{M_2} = \frac{8M_1}{M_2}$	M1 for relationship between new and old sets of values of M and r
	$\overline{(r_1)^3} = \overline{(r_2)^3}$	and old sets of values of m and r
	$r_2 = 2r_1$ % increase in $r = 100\%$	A1
9	(1)3 1	M1 for relationship between heigh
•	$\left(\frac{h}{45}\right)^3 = \frac{1}{2}$	ratio and volume ratio
	h = 35.716	
	h = 35.7 cm (3sf)	A1
	# = 55.7 CM (551)	
10ai	$x^2 - 4x + 8 = (x - 2)^2 - 2^2 + 8$	
	$=(x-2)^2+4$	B1

The minimum value of $x^2 - 4x + 8$ is bigger than 0.	B1
OR The minimum turning point of $y = x^2 - 4x + 8$ is (2,4) which is above the x-axis. Hence, graph of $y = x^2 - 4x + 8$ does not intersect the x-axis.	
OR $v = x^2 - 4x + 8$ is a U-shaped graph and its turning	
point is (2,4) which is above the x-axis. Hence, graph of $y = x^2 - 4x + 8$ does not intersect the x-axis.	
OR When $(x-2)^2 + 4 = 0$, $(x-2)^2 = -4$. But $(x-2)^2$ cannot be negative and hence, the graph of $y = x^2 - 4x + 8$ does not intersect the x-axis.	
15	BI for furning point (-1, 16) BI for x-intercepts at -5 and 3; and y-intercept at 15 BI for correct shape of curve passing through their turning point and intercepts with their axes
$x^{2}-8xy+16y^{2}=0$ $(x-4y)^{2}=0$ $x-4y=0$	B1 for $(x-4y)^2$
$\begin{vmatrix} x = 4y \\ \frac{x}{y} = 4 \end{vmatrix}$	A1
	OR The minimum turning point of $y = x^2 - 4x + 8$ is (2,4) which is above the x-axis. Hence, graph of $y = x^2 - 4x + 8$ does not intersect the x-axis. OR $\frac{y = x^2 - 4x + 8}{\text{point}} \text{ is a U-shaped graph and its turning}}{\text{point}} \text{ is (2,4)} \text{ which is above the x-axis.}}$ OR $\frac{y = x^2 - 4x + 8}{\text{point}} \text{ is a U-shaped graph and its turning}}{\text{point}} \text{ is (2,4)} \text{ which is above the x-axis.}}$ OR When $(x-2)^2 + 4 = 0$, $(x-2)^2 = -4$. But $(x-2)^2$ cannot be negative and hence, the graph of $y = x^2 - 4x + 8$ does not intersect the x-axis.

10	477 M 1	AF AR
12a	$\frac{AE}{AC} = \frac{7}{14} = \frac{1}{2} \text{ (given)}$	M1 for showing $\frac{AE}{AC} = \frac{AB}{AD}$ (given)
	$\frac{AC}{AB} = \frac{10}{20} = \frac{1}{2}$ (given)	- accept if length ratio of $\frac{1}{2}$ not
		mentioned 2
	$\angle CAD = \angle EAB$ (common) ACD similar to AEB (SAS)	
	ACD similar to ADD (SAC)	A1 for complete proof, reasons and conclusion
12b	$AF = \frac{1}{4} \times 10 = 2.5 \text{ cm}$	B1
	7	
13a	a=52	B1
	b=58	B1
	c = 74	B1
13b	58	B1
13c	Every student's test score is used to calculate the	B1
	standard deviation while the interquartile range is	·
	calculated using the lower and upper quartiles only.	
14a	$-2x^2 + x + 3 = (-x - 1)(2x - 3)$	B1 accept $-(x+1)(2x-3)$
14b	$8x^3 - 18xy^2 = 2x(4x^2 - 9y^2)$	M1 for factorising 2x
	=2x(2x-3y)(2x+3y)	A1
15a		M1 for showing all 3 construction lines to draw angle bisector
		A1 for marking the point P
1 ==	0.500	B1 (accept 049° to 051°)
15b	050°	Вт (ассерт 049 то 051)
1		

16a	(300)	B1
	$\mathbf{B} = \begin{bmatrix} 500 \\ 1000 \end{bmatrix}$	
	(1000)	
16b	$\mathbf{X} = \begin{pmatrix} 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} 80 & 42 & 20 \\ 120 & 62 & 30 \end{pmatrix} \begin{pmatrix} 300 \\ 500 \\ 1000 \end{pmatrix}$	M1 for correct matrix multiplication of any 2 matrices
	$= (0.5 0.5) \binom{65000}{97000}$	
	=(81000)	A1 do not award for answer left as 81000
16c	The mean / average amount of money collected from the semi-final and the final football matches.	B1
	OR It represents half the total amount of money collected from the semi-final and the final football matches.	
	OR It represents the total amount of money collected from the semi-final and the final football matches if there is a 50% discount on all tickets.	
17	$\frac{(2n-2)\times 180}{2n} = \frac{(n-2)\times 180}{n} + 30$	M1 for forming relationship
	2n n $90(2n-2) = 180(n-2) + 30n$ $3(2n-2) = 6(n-2) + n$ $6n-6 = 6n-12 + n$	M1 for changing to linear equation
	n = 6	A1
18	$(2n-1)^{2} + 3 = 4n^{2} - 4n + 1 + 3$ $= 4n^{2} - 4n + 4$	
	$=4(n^2-n+1)$	B1 for $4(n^2-n+1)$
:	Since $n^2 - n + 1$ is an integer, $4(n^2 - n + 1)$ is a multiple of 4.	A1 for conclusion

19a	v_20_5	M1 for forming relationship
194	$\frac{v-20}{80} = \frac{5}{25}$	
	v=36	
	Speed at 20 sec = 36 m/s	B1 for 36 m/s at $t = 20$ sec
	$=\frac{0.036}{1/3600}$ km/h	
	/3600	
	=129.6 km/h	A1 (exact ans only)
101	1	M1 to find area under speed-time
19b	Distance = $\frac{1}{2}(100 + 20)(25)$	graph
	=1500 m	A1
		No. C. in the horses
19c	$\frac{100-20}{25} = 2 \times \frac{k-20}{62.5-25}$	M1 for forming relationship between deceleration in first 25sec and
	1	acceleration after 25sec
	$3.2 = \frac{4}{75}(k-20)$	
	k = 80	A1
20a	PQ = PO + OQ	
	$= \begin{pmatrix} -3 \\ 1 \end{pmatrix} + \begin{pmatrix} -5 \\ 5 \end{pmatrix}$	
		(8)
	(-8)	B1 for $PQ = \begin{pmatrix} -8 \\ 6 \end{pmatrix}$ or M1 for
	$\begin{vmatrix} = \begin{pmatrix} -8 \\ 6 \end{pmatrix} \\ PQ = \sqrt{(-8)^2 + 6^2} \end{vmatrix}$	finding length of line segment PQ
	$ PQ = \sqrt{(-8)^2 + 6^2}$	inding length of the segment?
	=10	A1
20b	$m = \frac{-1-5}{3-(-5)} = -\frac{3}{4}$	
	$-1 = -\frac{3}{4}(3) + c$	
	5	
	$c = \frac{5}{4}$	
		B1 for $y = -\frac{3}{4}x + \frac{5}{4}$
	$y = -\frac{3}{4}x + \frac{5}{4}$	7 7
		Or M1 for applying $m_{PQ} = m_{PR}$
	Subs $y = 0$, $x = \frac{5}{2}$	
	3	
	Subs $y = 0, x = \frac{5}{3}$ $R = (\frac{5}{3}, 0)$	A1
	3	
	OR	
-		

	V	
	$\overrightarrow{PQ} = \begin{pmatrix} -8 \\ 6 \end{pmatrix}$ $m = \frac{6}{-8} = -\frac{3}{4}$ $R(x,0) P(3,-1)$	M1 for forming relationship
	$\frac{0 - (-1)}{x - 3} = -\frac{3}{4}$ $x = \frac{5}{3}$ $R = (\frac{5}{3}, 0)$	A1
	OR $PR = kPQ$	
	$OR - \begin{pmatrix} -3 \\ 1 \end{pmatrix} = k \begin{pmatrix} -8 \\ 6 \end{pmatrix}$ $OR = \begin{pmatrix} -8k + 3 \\ 6k - 1 \end{pmatrix}$	M1 for finding $k = \frac{1}{6}$
	$6k-1=0$ $k = \frac{1}{6}$ $OR = \begin{pmatrix} -8(\frac{1}{6}) + 3 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{5}{3} \\ 0 \end{pmatrix}$	A1
20c	$R = \left(\frac{5}{3}, 0\right)$ $S = (-3, 0)$	
200	5 - (-3,0)	B1
21	New BMI = $\frac{0.992m}{(1.02h)^2}$ = $0.95347 \left(\frac{m}{h^2}\right)$	M1 to express new BMI in terms of old BMI
	$= 0.95347 \text{ (old BMI)}$ % change $= \frac{0.95347 - 1}{1} \times 100\%$	B1 for 0.95347
	= -4.65% (3sf)	

22a	$x = 7 \times 5 = 35$ $y = 150 - 60 - 35 = 55$	B1 B1
22b	$\frac{n}{150+n} \times \frac{n}{150+n} = \frac{1}{256}$ $\frac{n^2}{22500+300n+n^2} = \frac{1}{256}$ $256n^2 = 22500+300n+n^2$ $255n^2 - 300n - 22500 = 0$ $17n^2 - 20n - 1500 = 0$	M1 for forming equation M1 for simplifying LHS into single fraction A1
22c	$17n^{2} - 20n - 1500 = 0$ $(17n + 150)(n - 10) = 0$ $n = -\frac{150}{17} \text{ (rej)}, \qquad n = 10$	M1 for factorisation or quadratic formula A1 (SC1 for $n = 10$ without working)
23a	$\tan \angle ABO = \frac{15}{8}$ $\angle ABO = 1.0808 \text{ rad (4 dp)}$	A1
23b	$\angle BAO = \pi - \frac{\pi}{2} - 1.0808$ $= 0.48999$ Area of unshaded $POB = \frac{1}{2}(15)(8) - \frac{1}{2}(15^2)(0.48999)$ 4.8761 Area of shaded region $= \frac{1}{2}(8^2)(1.0808) - 4.8761$ $= 29.709$ $= 29.7 \text{ cm}^2 \text{ (3sf)}$	M1 to find area of sector APO or sector BOQ (accept if student converts angles to degrees to compute area) B1 for area of unshaded POB = 4.8761

2022 MF Mathematics Preliminary Examination Paper 2 Marking Scheme

	Qn	Solutions	Marks	
1	(a)			AO1
		$\frac{(3x-y)}{(x+2y)} = \frac{1}{3}$		
		3(3x-y) = x + 2y		
		9x - 3y = x + 2y		
		9x - x = 2y + 3y	M1	Group the like terms
		8x = 5y		together
		$\frac{x}{y} = \frac{5}{8}$		
		$\frac{-}{y} = \frac{-}{8}$		
		x: y = 5:8	A1	
-	(1-)		-	401
1	(b)	$\left \frac{2-3x}{3} < \frac{2x-1}{6} \right $		AO1
		Multiply the inequality by 6 $2(2-3x) < 2x-1$		
		4-6x < 2x-1	M1	Form a linear
		-6x - 2x < -1 - 4	IVII	inequality without
		-8x < -5		bracket
		$x > \frac{5}{8}$	A1	
	 	· ·	111	
1	(c)	Method 1		AO2
		$\frac{1}{x} + \frac{1}{y^2} = \frac{1}{w-3}$		
		$x y^2 w-3$		
		$\frac{1}{y^2} = \frac{1}{w-3} - \frac{1}{x}$		
		y^2 $w-3$ x		
		$\frac{1}{y^2} = \frac{x - (w - 3)}{(w - 3)x}$	M1	Combine 2 fractions
			IMI	into a single fraction
		$\frac{1}{2} = \frac{x - w + 3}{(x - 2)}$		g
		$\frac{1}{y^2} = \frac{1}{x(w-3)}$		3.5.1
		$y^2 = \frac{x(w-3)}{w-w+2}$	M1	Make y^2 be the subject
		x-w+3		
		$y^{2} = \frac{x(w-3)}{x-w+3}$ $y = \pm \sqrt{\frac{x(w-3)}{x-w+3}}$	A1	
		vx-w+3		
			1	
L			<u></u>	

1	(c)	Method 2		
		Multiply the equation by $xy^2(w-3)$:	M1	Form a non-fractional
		$\begin{cases} y^{2}(w-3) + x(w-3) = xy^{2} \\ y^{2}(w-3) - xy^{2} = x(w-3) \end{cases}$		equation
		$\begin{cases} y'(w-3) - xy' = x(w-3) \\ y^2(w-3-x) = x(w-3) \end{cases}$		
			M ₁	Make y² be the subject
		$y^2 = \frac{x(w-3)}{(w-3-x)}$	IVII	wake y be the subject
		$y = \pm \sqrt{\frac{x(w-3)}{(w-3-x)}}$	A1	
				403
2	(a)	Cost Price	M1	AO2 For multiply 85
		$=$1288 \times \frac{85}{100} \times \frac{100}{125}$		For multiply $\frac{85}{100}$
		100 123	M1 A1	For multiply $\frac{100}{125}$
		= \$875.84		
2	(b)	Amount paid by instalment $=$125 \times 18 = 2250		AO1
_		Amount borrowed = $$2388 - $295 = 2093	N1	For Total Interest
		Total Interest = $$2250 - $2093 = 157	M1	For Total Interest
		$I = \frac{PRT}{100}$		
		$157 = \frac{2093 \times R \times \frac{18}{12}}{100}$		
			M1	For arithmetic
		$R = \frac{157 \times 100}{2093} \times \frac{12}{18}$		expression for R
		R = 5.00 (3 s.f)	A1	
				1402
2	(c)	$A = P \left(1 + \frac{r}{100} \right)^n \text{where } r = -x$		AO2
		$1200 = 2000 \left(1 - \frac{x}{100}\right)^4$	M1	Forming equation in x
		$\left(1 - \frac{x}{100}\right)^4 = \frac{1200}{2000}$		
		$1-\frac{x}{100} = \left(\frac{12}{20}\right)^{\frac{1}{4}}$	M1	For taking 4 th root on both sides of equation
		$-\frac{x}{100} = \left(\frac{12}{20}\right)^{\frac{1}{4}} - 1$		
		$\frac{x}{100} = 1 - \left(\frac{12}{20}\right)^{\frac{1}{4}}$		

		ī	$x = \left[1 - \left(\frac{12}{20}\right)^{\frac{1}{4}}\right] \times 100$ $x = 11.9888$		
			x = 12.0 (3 s.f)	A1	
3	(a)	$=\frac{1}{2}$	surface area $(4\pi \times 30^2 + 2\pi \times 30 \times 70 + \pi \times 30^2 + 2\pi \times 30 \times 70 + \pi \times 30^2 + 4200\pi + 900\pi \text{ cm}^2)$	M1 M1	AO1 For finding surface area of hemisphere For finding curved
		= ($6900\pi \text{ cm}^2$		surface area of cylinder
		= 2	21676.989 cm ²		
		= 3	21700 cm ² (3 s.f)	A1	
3	(b)	(i)	Volume of water $= \frac{1}{2} \times \frac{4}{3} \pi \times 30^3 + \pi \times 30^2 \times 70 \text{ cm}^3$	M1	AO1 For volume of hemisphere OR
			= 18000π + 63000π cm ³ = 81000π cm ³ = $81000\pi \div 1000$ litres (1 litre = 1000 cm ³)	M1	volume of cylinder For total volume in cm ³
			$= 81\pi \text{ litres}$ $= 254.469 \text{ litres}$		
			= 254 litres (3 s.f)	A1	
3	(b)	(ii)	Time taken $= 81\pi \div 3$ seconds	M1	AO1
			= 84.823 seconds = 1 minutes 25 seconds	A 1	
3	(b)	(iii)	Volume of the bath $= 81000\pi$ cm ³		AO2
			$= \frac{81000\pi}{1000000} \text{ m}^3 (1\text{m} = 100\text{cm}, 1\text{m}^3 = 1000000\text{cm}^3)$ $= 0.254469 \text{ m}^3$	M1	For converting volume from cm³ to m³
			$l = \frac{1}{2}(0.4+0.6)\times0.3\times l = 0.254469$ $l = \frac{0.254469\times2}{0.3}$	M1	Forming equation to find <i>l</i> .
			$l = \frac{0.3}{0.3}$ $l = 1.69646 \text{ m}$ $l = 1.70 \text{ m (3s.f)}$	A1	

	T	Cd 11.1 ADCD	T	AO1
4	(a)	Area of the parallelogram ABCD		AUI
		$=2\times\frac{1}{2}\times15\times8\times\sin 50^{\circ}$	M1	
		$=91.9253 \text{ m}^2$		
ļ		$= 91.9 \text{ m}^2 (3 \text{ s.f.})$	A1	
4	(b)	$\angle ABC = 180^{\circ} - 50^{\circ} = 130^{\circ} \text{ (int.} \angle s, AD \parallel BC)$		AO1
		By Cosine Rule,	M1	
		$AC^2 = 15^2 + 8^2 - 2 \times 15 \times 8 \times \cos 130^\circ$		
		$AC^2 = 443.269$	M1	
		AC = 21.0539 m	A1	
		AC = 21.1 m (3s.f)	111	401
4	(c)	$\angle ADC = 180^{\circ} - 50^{\circ} = 130^{\circ} \text{ (int.} \angle s, DC \parallel AB)$		A01
		By Sine Rule,		
		$\frac{\sin \angle DAC}{15} = \frac{\sin 130^{\circ}}{21.0539}$		
		sin 130°	N/1	Make $\sin \angle DAC$ be
ļ		$\sin \angle DAC = \frac{\sin 130^{\circ}}{21.0539} \times 15$	M1	the subject
		$\angle DAC = 33.0775^{\circ}$		ine subject
		$\angle DAC = 33.1^{\circ} (1d.p)$	A1	
4	(d)	$\angle ACB = \angle DAC \ (alt. \angle s, AD \parallel BC)$		AO1
	` ′	$\angle ACB = 33.1^{\circ} (1 \text{ d.p})$	Di	
		Bearing of A from $C = 180^{\circ} + 33.1^{\circ} = 213.1^{\circ}$ (1.41)	B1	
4	(e)	$\tan 15^\circ = \frac{TB}{15}$		AO1
			M1	
		$TB = 15 \times \tan 15^{\circ}$		
		TB = 4.01923		
		$TB = 4.02 \mathrm{m} (3 \mathrm{s.f})$	A1	1.00
4	(f)	The smallest angle of $\theta = 15^{\circ}$ as A is farthest away from B. The greatest angle of $\theta = \angle TEB$ as E is nearest to B.		AO2
		13. 077 5°_@		
		E		
		, km		
		V.		
		A B	741	To Continue almost and
		$\sin 33.0775^\circ = \frac{BE}{8}$	M1	For finding shortest distance from B to AC
		$BE = 8 \times \sin 33.0775^{\circ} = 4.36618 \mathrm{m}$		
		\mathcal{J}^{r}		
		$t_{\text{cm}} / T_{\text{FR}} = \frac{4.01923}{1.000000000000000000000000000000000000$	M1	For finding the greatest θ
		4.36618 4.01923 m		,
		$\angle TEB = 42.6307^{\circ}$	A1	
		= 42.0 (1d.p) 4.36618 m	, ,	
		Hence $15^{\circ} \le \theta \le 42.6^{\circ}$	A1	

5	(a)	p = -3.7	B1	AO1
5	(b)	1-		A01
		y = 3x		
de la companya de la		9 3 4 5 6	B1	Mark the points Accurately
		-2	B1	Draw the curve passes through all the marked points
		$y = 4 - 2x - \frac{5}{x}$ $y = -4$	B1	Smooth curve with correct shape
		$y = -\frac{1}{2}x - 3$		
		7		
		-8 -8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -		
5	(c)	$2x + \frac{5}{x} = 8$		AO2
		$-2x-\frac{5}{x}=-8$		
	***************************************	$4-2x-\frac{5}{x}=4-8$ $4-2x-\frac{5}{x}=-4$		
		, x		
		Plot the line $y = -4$ From the graph, $x \approx 0.75$ or $x \approx 3.2$	B1	
		(accepted: 0.65, 0.7, 0.8, 0.85, or 3.1, 3.15, 3.25, 3.3)	B1	
5	(d)	Plot the line $y = 3x$ as guiding line	B1 B1	AO2
L	<u> </u>	From the graph, coordinates of A are $(1,-3)$	DI	

5	(e)	$3x^{2} -$	14x + 10 = 0		AO2
_	(-)	Divide the equation by $(-2x)$:			
			_		
		$-\frac{1}{2}x$	$+7-\frac{5}{x}=0$		
			$-\frac{5}{x} = \frac{3}{2}x - 7$		
			X 2		
			(4-2x) to both sides of the equation:		
		4 –	$2x - \frac{5}{x} = 4 - 2x + \frac{3}{2}x - 7$		
		4-	$2x - \frac{5}{x} = -\frac{1}{2}x - 3$	M1	For forming the equation
		Plot t	he line $y = -\frac{1}{2}x - 3$,	B1	For plotting the line
			the graph, the x-coordinates of the intersecting points		
			een the curve and the line are	A1	
			.85 or $x \approx 3.80$ pted: 0.75, 0.8, 0.9, 0.95 or 3.7, 3.75, 3.85, 3.9)	A1	
		(acce	pteu. 0.75, 0.6, 0.9, 0.95 of 5.7, 5.75, 5.65, 5.65,		
6	(a)	(i)	Area added on Day n		AO2
			=1+4(n-1)	 .	
			=4n-3	B1	
6	(a)	(ii)	$4 \times 20 - 3 = 77$	B1	A01
	(a)	(iii)	Area Added $=4n-3$		AO3
			As <i>n</i> is a positive integer, 4 <i>n</i> is always an even number. Subtracting odd number 3 from an even	B1	
]	number will give us an odd number.		
6	(b)	(i)	Total area of pavement at Day 6		AO2
			= 6×11=66	B1	AO2
6	(b)	(ii)	$n=1, A=1\times 1$		AOZ
			$n=2, A=2\times 3$		
į			$n=3, A=3\times5$		
			From observation, $A = n \times (2n-1)$	M1	
	}			A1	
6	(b)	(iii)	$A = 2n^2 - n$ Method 1	1	AO3
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3 weeks = 21 days	7.64	
			When n = 21, $A=2\times21^2-21=861\text{m}^2$	M1	
			Yes, as 861 > 780, hence an area of 780 m ² can be completed in 3 weeks.	A1	
			_		

Method 2		
$2n^2 - n = 780$		
$2n^2 - n - 780 = 0$		
(2n+39)(n-20)=0		
n = -19.5 or $n = 20$		
Yes, since it takes only 20 days to cover 780m ²	M1 A1	
· -	3.61	AO1
$GOA = 180^{\circ} - 90^{\circ} - 32^{\circ} \ (\angle \text{ sum of } \Delta)$ = 58°	A1	M0 if the reason is wrong
FCD=90° (rt∠ in semi-circle)	M1	AO2
BCF=106°-90°=16°	A1	M0 if the reason is wrong
$RDF = 16^{\circ} \ (\angle s \text{ in same segment})$		AO2
$FDA = 58^{\circ} \div 2 = 29^{\circ}$ (\angle at centre = $2\angle$ at circumference)	M1	M0 if the reason is
$3DA = 16^{\circ} + 29^{\circ} = 45^{\circ}$	Δ1	wrong
$BAD = 180^{\circ} - 106^{\circ} = 74^{\circ}$ ($\angle s$ in opp. segments)		AO2
	Al	M0 if the reason is wrong
(a) Median = 350 minutes	D1	AQ1
	101	801
Upper quartile = 400		
	B1	
=		AO2
$\frac{80}{100} \times 60 = 48$ students	M1	
From the graph, 48 students spent < 420 minutes	A1	
		AO2
50 Cumulative frequency 40	B1	Any curve with same median and gentler slope for IQR
	$(2n+39)(n-20) = 0$ $n=-19.5$ or $n=20$ Yes, since it takes only 20 days to cover 780m^2 $GAO = 90^\circ \text{ (tangent } \bot \text{ radius)}$ $GOA = 180^\circ - 90^\circ - 32^\circ \text{ (} \angle \text{ sum of } \Delta \text{)}$ $= 58^\circ$ $GFCD = 90^\circ \text{ (rt } \angle \text{ in semi-circle})$ $BCF = 106^\circ - 90^\circ = 16^\circ$ $BDF = 16^\circ \text{ (} \angle \text{s in same segment})$ $FDA = 58^\circ \div 2 = 29^\circ \text{ (} \angle \text{ at centre} = 2\angle \text{ at circumference})$ $BDA = 16^\circ + 29^\circ = 45^\circ$ $BAD = 180^\circ - 74^\circ - 29^\circ = 77^\circ \text{ (} \angle \text{ sum of } \Delta \text{)}$ $DEA = 180^\circ - 74^\circ - 29^\circ = 77^\circ \text{ (} \angle \text{ sum of } \Delta \text{)}$ $A = \frac{1}{2} \text{ (a)} \text{ Median } = 350 \text{ minutes}$ $A = \frac{1}{2} \text{ (b)} \text{ Lower quartile } = 300$ $A = \frac{1}{2} \text{ Upper quartile } = 400$ $A = \frac{1}{2} \text{ Interquartile } = \frac{1}{2} \text{ (a)}$ $A = \frac{1}{2} \text{ (a)} \text{ Median } = \frac{1}{2} \text{ (a)}$ $A = \frac{1}{2} \text{ (b)}$ $A = \frac{1}{2} \text{ (a)}$ $A = \frac{1}{2} \text{ (b)}$ $A = \frac{1}{2} \text{ (b)}$ $A = \frac{1}{2} \text{ (c)}$ $A = \frac$	$(2n+39)(n-20) = 0$ $n = -19.5 or n = 20$ $Yes, since it takes only 20 days to cover 780m^2$ $GAO = 90^{\circ} \text{ (tangent } \bot \text{ radius)}$ $GOA = 180^{\circ} - 90^{\circ} - 32^{\circ} \text{ (} \angle \text{ sum of } \Delta \text{)}$ $= 58^{\circ}$ $GFCD = 90^{\circ} \text{ (rt } \angle \text{ in semi-circle)}$ $BCF = 106^{\circ} - 90^{\circ} = 16^{\circ}$ $BDF = 16^{\circ} \text{ (} \angle \text{s in same segment)}$ $FDA = 58^{\circ} \div 2 = 29^{\circ} \text{ (} \angle \text{ at centre} = 2\angle \text{ at circumference)}$ $BDA = 16^{\circ} + 29^{\circ} = 45^{\circ}$ $BAD = 180^{\circ} - 106^{\circ} = 74^{\circ} \text{ (} \angle \text{s in opp.segments)}$ $DEA = 180^{\circ} - 74^{\circ} - 29^{\circ} = 77^{\circ} \text{ (} \angle \text{sum of } \Delta \text{)}$ $A1$ $(a) \text{Median } = 350 \text{ minutes}$ $(b) \text{Lower quartile } = 300$ $\text{Upper quartile } = 400$ $\text{Interquartile range} = 400 - 300 = 100 \text{ minutes}$ $80^{\circ} \text{ spent } \ge x \text{ minutes on social media in a week}$ $80^{\circ} \text{ spent } < x \text{ minutes on social media in a week}$ $80^{\circ} \text{ spent } < x \text{ minutes on social media in a week}$ $80^{\circ} \text{ spent } < x \text{ minutes on social media in a week}$ $100^{\circ} \times 60 = 48 \text{ students}$ $\text{From the graph, } 48 \text{ students spent } < 420 \text{ minutes}$ $\text{Hence } x = 420$ Cumulative

				1	
8	(b)	(i)	(a) $\frac{8+30}{240} = \frac{38}{240} = \frac{19}{120}$	B1	AO1
			(b) $\frac{5+40}{240} = \frac{45}{240} = \frac{3}{16}$	B1	AO1
8	(b)	(ii)	P(at least one of them spent ≤ 40 minutes) = 1-P(none of them spent ≤ 40 minutes) = 1-P(both of them spent > 40 minutes) = 1- $\frac{240-15-8}{240} \times \frac{240-15-8-1}{240-1}$ = 1- $\frac{217}{240} \times \frac{216}{239}$ = $\frac{437}{2390}$	M1	AO2
9	(a)	15 cm	Let the unshaded region be Z. Area X = Area $Y+12$ Area $X + A$ rea $Z = A$ rea $Y + A$ rea $Z+12$ Area of $ABCD$ = Area of $ADE + 12$ $AB \times 15 = \frac{1}{2} \times 8 \times 15 + 12$ $AB \times 15 = 72$ $AB \times 15 = 72$ $AB = 4.8 \text{ cm}$	MH MH A1	40 2
9	(b)	(i)	$OC = OA + AC$ $= OA + \frac{2}{3}AB$ $= OA + \frac{2}{3}(AO + OB)$ $= a + \frac{2}{3}(-a + b)$ $= \frac{1}{3}a + \frac{2}{3}b$	M1	AO2
9	(b)	(ii)	$CD = CO + OD$ $= -OC + \frac{5}{3}OB$ $= -\left(\frac{1}{3}a + \frac{2}{3}b\right) + \frac{5}{3}b$ $= -\frac{1}{3}a + b$	M1	AO2

	т	1			
9	(b)	(iii)	From (ii) $\overrightarrow{CD} = -\frac{1}{3} \underline{a} + \underline{b}$		AO3
	faire decreases		$\overrightarrow{EC} = \overrightarrow{EO} + \overrightarrow{OC}$		
			$=-\frac{5}{9}a+\left(\frac{1}{3}a+\frac{2}{3}b\right)$		
			$\overline{EC} = -\frac{2}{9}a + \frac{2}{3}b$	M1	For finding \overline{EC}
			9 3~		To mang Le
			$EC = \frac{2}{3} \left(-\frac{1}{3} a + b \right)$		
			$EC = \frac{2}{3}CD$	M1	For connecting EC and CD by a scaler
			\Rightarrow EC is parallel to CD and C is the common point	A1	Do and OD by a source
		(:-)	$\Rightarrow D, C \text{ and } E \text{ are collinear.}$		402
		(iv)	$\frac{\text{area of } \Delta OEC}{\text{area of } \Delta OCD}$		AO2
			$=rac{EC}{CD}$		
			$=\frac{2}{3}$	B1	
		(v)	area of ΔEAC		AO2
		, ,	area of $\triangle OAB$:	
			$= \frac{\text{area of } \Delta EAC}{\text{area of } \Delta OAC} \times \frac{\text{area of } \Delta OAC}{\text{area of } \Delta OAB}$		
			$=\frac{4}{9} \times \frac{2}{3} = \frac{8}{27}$	B1	
10		701	W-11C		1.00
10	(a)		World Context Problem	T	AO3
	(a)	Mea	$n = \frac{\sum fx}{\sum f} = \frac{3321}{1000} = 3.321$	B1	
		!	dard deviation		
	AND THE PROPERTY OF THE PROPER	= \\ \frac{1}{2}	$\frac{\sum f \hat{x}^2}{\sum f} - \overline{x}^2 = \sqrt{\frac{11325}{1000} - 3.321^2} = 0.544 \text{ (3s.f)}$	B1	
	(b)				
		Becar	thew should recommend Mr Tan to produce Model X. use the mean for X is larger than the mean for Y, h may suggest that more people are likely to buy el X.	B1	B0 if reason is wrong

Then the missing value for $SA = 1000 - 31 - 14 - a - b$ $= 955 - a - b$ Mean = $\sum f^{x} = 1.907$ $\frac{a + 62 + 42 + 4b + 5(955 - a - b)}{1000} = 1.907$ $4a + b = 2972 (1)$ Standard deviation = $\sqrt{\sum f^{x^{2}} - (\bar{x})^{2}} = 1.611$ $\sqrt{\frac{a + 124 + 126 + 16b + 25(955 - a - b)}{1000}} = 1.907^{2} = 1.611$ $\sqrt{\frac{a + 124 + 126 + 16b + 25(955 - a - b)}{1000}} = 1.907^{2} = 1.611$ For forming the correct equation for standard deviation $24125 - 24a - 9b = 6231.97$ $24a + 9b = 17893.03 (2)$ $(1) \times 6: 24a + 6b = 17832 (3)$ $(2) - (3): 3b = 61.03$ $b = 20.3$ Since b is a whole number, then $b = 20$. Hence the missing value for A is $b = 20$. Subst. $b = 20$ in $(1): 4a + 20 = 2972$ $a = 738$ Hence the missing value for A is $b = 20$. Hence the missing value for A is $a = 738$. Hence the missing value for A is $a = 738$. Hence the missing value for A is $a = 738$. Hence the missing value for A is $a = 738$. Hence the missing value for A is $a = 738$. Hence the missing value for A is $a = 738$. Hence the missing value for A is $a = 738$. Hence the missing value for A is $a = 738$. Hence the missing value for A is $a = 738$. Hence the missing value for A is $a = 738$. Hence the missing value for A is A if A is A is A if A is A if A is A if A is A if A is A is A if A is A i		T	- 1 177 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	10	(c)	For Model Y, let the missing values for SD and A be a and b respectively.		
Mean = $\sum fx = 1.907$ $\frac{a+62+42+4b+5(955-a-b)}{1000} = 1.907$ $4a+b=2972(1)$ Standard deviation = $\sqrt{\sum fx^2} - (\bar{x})^2 = 1.611$ $\sqrt{\frac{a+124+126+16b+25(955-a-b)}{1000}} - 1.907^2 = 1.611$ $\frac{24125-24a-9b=6231.97}{24a+9b=17893.03(2)}$ (1) × 6: $24a+6b=17832(3)$ (2) -(3): $3b=61.03$ $b=20.3$ Since b is a whole number, then $b=20$. Hence the missing value for A is $b=20$. Subst. $b=20$ in (1): $4a+20=2972$ $a=738$ Hence the missing value for A is $b=50$. Subst. $b=20$ in (1): $a=173$ Hence the missing value for $a=173$ Hence the missing valu			Then the missing value for $SA = 1000 - 31 - 14 - a - b$		
$\frac{a+62+42+4b+5(955-a-b)}{1000} = 1.907$ $4a+b=2972(1)$ Standard deviation = $\sqrt{\frac{\sum f x^2}{\sum f}} - (\overline{x})^2 = 1.611$ $\sqrt{\frac{a+124+126+16b+25(955-a-b)}{1000}} - 1.907^2 = 1.611$ $\frac{24125-24a-9b=6231.97}{24a+9b=17893.03(2)}$ (1) × 6: $24a+6b=17832(3)$ (2) -(3): $3b=61.03$ $b=20.3$ Since b is a whole number, then $b=20$. Hence the missing value for A is $b=20$. Subst. $b=20$ in (1): $4a+20=2972$ $a=738$ Hence the missing value for SD is $a=738$.	1				
$\frac{a+62+42+4b+5(955-a-b)}{1000} = 1.907$ $4a+b=2972(1)$ Standard deviation = $\sqrt{\frac{\sum f x^2}{\sum f}} - (\overline{x})^2 = 1.611$ $\sqrt{\frac{a+124+126+16b+25(955-a-b)}{1000}} - 1.907^2 = 1.611$ $\frac{24125-24a-9b=6231.97}{24a+9b=17893.03(2)}$ (1) × 6: $24a+6b=17832(3)$ (2) -(3): $3b=61.03$ $b=20.3$ Since b is a whole number, then $b=20$. Hence the missing value for A is $b=20$. Subst. $b=20$ in (1): $4a+20=2972$ $a=738$ Hence the missing value for SD is $a=738$.			$Mean = \frac{\sum fx}{\sum f} = 1.907$		For forming the correct
Standard deviation = $\sqrt{\frac{\sum f x^2}{\sum f} - (\overline{x})^2} = 1.611$ $\sqrt{\frac{a+124+126+16b+25(955-a-b)}{1000}} - 1.907^2 = 1.611$ $24125-24a-9b=6231.97$ $24a+9b=17893.03(2)$ $(1) \times 6: 24a+6b=17832(3)$ $(2)-(3): 3b=61.03$ $b=20.3$ Since b is a whole number, then $b=20$. Hence the missing value for A is $b=20$. Subst. $b=20$ in $(1): 4a+20=2972$ $a=738$ Hence the missing value for A is $b=50$. Hence the missing value for A is $b=50$. Subst. A is A			$\frac{a+62+42+4b+5(955-a-b)}{1000}=1.907$	M1	equation for mean
Standard deviation = $\sqrt{\frac{\sum f x^2}{\sum f}} - (\overline{x})^2 = 1.611$ $\sqrt{\frac{a+124+126+16b+25(955-a-b)}{1000}} - 1.907^2 = 1.611$ $24125-24a-9b=6231.97$ $24a+9b=17893.03(2)$ (1)×6: $24a+6b=17832(3)$ (2)-(3): $3b=61.03$ $b=20.3$ Since b is a whole number, then $b=20$. Hence the missing value for A is $b=20$. Subst. $b=20$ in (1): $4a+20=2972$ $a=738$ Hence the missing value for SA is $955-a-b$ $=955-738-20$ $=197$ (d) Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it was not a strong agreement that they will buy Model X, it was not a strong agreement that they will do it. B1 For forming the correct method of solving simultaneous equation Accept any correct method of solving simultaneous equation A1 A1 B1 B0 if reason is wrong Accept any reasonable explanation based on same idea given in					
Standard deviation = $\sqrt{\frac{\sum f x^2}{\sum f}} - (\overline{x})^2 = 1.611$ $\sqrt{\frac{a+124+126+16b+25(955-a-b)}{1000}} - 1.907^2 = 1.611$ $24125-24a-9b=6231.97$ $24a+9b=17893.03(2)$ $(1) \times 6: 24a+6b=17832(3)$ $(2)-(3): 3b=61.03$ $b=20.3$ Since b is a whole number, then $b=20$. Hence the missing value for A is $b=20$. Subst. $b=20$ in (1): $4a+20=2972$ $a=738$ Hence the missing value for A is $b=30$. Hence the missing value for A is A in the sum of A is A in the sum of A is A in the sum of A in the sum of A is A in the sum of A in the sum of A is A in the sum of A in the sum of A is A in the sum of A is A in the sum of A in the sum					
$\sqrt{\frac{a+124+126+16b+25(955-a-b)}{1000}} -1.907^2 = 1.611$ $\sqrt{\frac{a+124+126+16b+25(955-a-b)}{1000}} -1.907^2 = 1.611$ $24125-24a-9b=6231.97$ $24a+9b=17893.03(2)$ $(1)\times 6: 24a+6b=17832(3)$ $(2)-(3): 3b=61.03$ $b=20.3$ Since b is a whole number, then $b=20$. Hence the missing value for A is $b=20$. Subst. $b=20$ in A in			4u + b = 2972		
$\sqrt{\frac{a+124+120+100+23(333 \text{ a } 8)}{1000}} - 1.907^2 = 1.611}$ $24125 - 24a - 9b = 6231.97$ $24a + 9b = 17893.03(2)$ $(1) \times 6 : 24a + 6b = 17832(3)$ $(2) - (3) : 3b = 61.03$ $b = 20.3$ Since b is a whole number, then $b = 20$. Hence the missing value for A is $b = 20$. Subst. $b = 20$ in (1): $4a + 20 = 2972$ $a = 738$ Hence the missing value for SA is $955 - a - b$ $= 955 - 738 - 20$ $= 197$ (d) Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it use not a strong agreement that they will buy Model X, it are represented by the strong agreement that they will buy Model X it use not a strong agreement that they will buy Model X it are represented by the strong agreement that they will buy Model X it are represented by the strong agreement that they will do it.			1 4		For forming the correct
$(1) \times 6: 24a+6b=17832(2)$ $(1) \times 6: 24a+6b=17832(3)$ $(2)-(3): 3b=61.03$ $b=20.3$ Since b is a whole number, then $b=20$. Hence the missing value for A is $b=20$. Subst. $b=20$ in (1): $4a+20=2972$ $a=738$ Hence the missing value for SD is $a=738$. Hence the missing value for SA is $955-a-b$ $=955-738-20$ $=197$ $(d) Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it was not a strong agreement that they will do it. Although 347 people agreement that they will do it.$			$\sqrt{\frac{a+124+126+16b+25(955-a-b)}{1000}} - 1.907^2 = 1.611$	M1	
24 a + 9 b = 17893.03 (2) (1) × 6: 24 a + 6 b = 17832 (3) (2) - (3): 3b = 61.03 b = 20.3 Since b is a whole number, then b = 20. Hence the missing value for A is b = 20. Subst. b = 20 in (1): 4 a + 20 = 2972 a = 738 Hence the missing value for SD is a = 738. Hence the missing value for SA is 955 - a - b = 955 - 738 - 20 = 197 (d) Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it years not a strong agreement that they will do it. A1 B1 B0 if reason is wrong Accept any reasonable explanation based on same idea given in			24125 - 24a - 9b - 6231.97		
(1)×6: 24a+6b=17832(3) (2)-(3): 3b=61.03 b=20.3 Since b is a whole number, then b=20. Hence the missing value for A is b=20. Subst. b=20 in (1): 4a+20=2972 a=738 Hence the missing value for SD is a=738. Hence the missing value for SA is 955-a-b =955-738-20 =197 (d) Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it was not a strong agreement that they will do it. Although 347 people agreement that they will do it. Simultaneous equation A1 B1 B0 if reason is wrong Accept any reasonable explanation based on same idea given in			i e e e e e e e e e e e e e e e e e e e		
(2)-(3): 3b = 61.03 b = 20.3 Since b is a whole number, then b = 20. Hence the missing value for A is b = 20. Subst. b = 20 in (1): 4a + 20 = 2972 a = 738 Hence the missing value for SD is a = 738. Hence the missing value for SA is 955-a-b = 955-738-20 = 197 (d) Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it was not a strong agreement that they will do it. A1 B1 B0 if reason is wrong Accept any reasonable explanation based on same idea given in					
b = 20.3 Since b is a whole number, then b = 20. Hence the missing value for A is b = 20. Subst. b = 20 in (1): 4 a + 20 = 2972 a = 738 Hence the missing value for SD is a = 738. Hence the missing value for SA is 955-a-b =955-738-20 =197 (d) Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it was not a strong agreement that they will do it. A1 B1 B0 if reason is wrong Accept any reasonable explanation based on same idea given in	Ì		(-)		Simuraneous equations
Since b is a whole number, then $b = 20$. Hence the missing value for A is $b = 20$. Subst. $b = 20$ in (1): $4a + 20 = 2972$ $a = 738$ Hence the missing value for SD is $a = 738$. Hence the missing value for SA is $955 - a - b$ $= 955 - 738 - 20$ $= 197$ A1 (d) Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it was not a strong agreement that they will do it. B1 B0 if reason is wrong explanation based on same idea given in			(2)		
Hence the missing value for A is $b = 20$. Subst. $b = 20$ in (1): $4a + 20 = 2972$ $a = 738$ Hence the missing value for SD is $a = 738$. Hence the missing value for SA is $955 - a - b$ $= 955 - 738 - 20$ $= 197$ A1 (d) Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it was not a strong agreement that they will do it. B1 B0 if reason is wrong Accept any reasonable explanation based on same idea given in					
Subst. $b = 20$ in (1): $4a + 20 = 2972$ $a = 738$ Hence the missing value for SD is $a = 738$. Hence the missing value for SA is $955 - a - b$ $= 955 - 738 - 20$ $= 197$ A1 (d) Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it was not a strong agreement that they will do it. B1 B0 if reason is wrong explanation based on same idea given in			Since b is a whole number, then $b = 20$. Hence the missing value for A is $b = 20$.	A1	
A1 Hence the missing value for SD is $a = 738$. Hence the missing value for SA is $955 - a - b$ $= 955 - 738 - 20$ $= 197$ (d) Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it was not a strong agreement that they will do it. B1 B0 if reason is wrong explanation based on same idea given in			Subst. $h = 20$ in (1): $4a + 20 = 2972$		
Hence the missing value for SD is $a = 738$. Hence the missing value for SA is $955-a-b$ $= 955-738-20$ $= 197$ (d) Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it was not a strong agreement that they will do it. B1 Accept any reasonable explanation based on same idea given in			a = 738	A1	
=955-738-20 =197 (d) Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it Was not a strong agreement that they will do it. Although 347 people agreement that they will do it. Although 347 people agreement that they will do it.	İ		Hence the missing value for SD is $a = 738$.	***	
=197 (d) Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it was not a strong agreement that they will do it. B1 B0 if reason is wrong explanation based on same idea given in					
(d) Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it was not a strong agreement that they will do it. B1 B0 if reason is wrong Accept any reasonable explanation based on same idea given in				A1	
Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it Was not a strong agreement that they will do it. B1 B0 if reason is wrong Accept any reasonable explanation based on same idea given in					
people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it Was not a strong agreement that they will do it. Accept any reasonable explanation based on same idea given in		(d)	Because there are 197 people (about 20% of those surveyed)	B1	B0 if reason is wrong
Although 347 people agree that they will buy Model X, it Was not a strong agreement that they will do it. B1 explanation based on same idea given in			who strongly agree that they will buy Model X.		Accept any reasonable
was not a strong agreement that they will do it. same idea given in			Although 347 people agree that they will buy Model X, it	B1	explanation based on
mark scheme			was not a strong agreement that they will do it.		same idea given in mark scheme
OR					
Mr Tan should produce Model X. Because there are 349 people who agree and strongly agree			Mr Tan should produce Model A. Recovery there are 340 people who saree and strongly saree		
that they will buy Model X but only 217 people agree and			that they will have Model X but only 217 people agree and		
strongly agree that they will buy Model Y.			strongly agree that they will buy Model Y.		