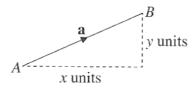
Secondary 4 Mathematics: Vectors

1. <u>Vectors</u>

- A vector is a quantity that has both **magnitude** and **direction**.
- A vector can be represented by a directed line segment as shown below.



- Point *A* is known as the **starting point** and point *B* is the **ending point**.
- The vector above can be denoted by \overrightarrow{AB} or $\begin{pmatrix} x \\ y \end{pmatrix}$ or *a*.

A. Magnitude of a Column Vector

• For
$$\overrightarrow{AB} = a = \begin{pmatrix} x \\ y \end{pmatrix}$$
, magnitude of $a = |a| = \sqrt{x^2 + y^2}$

B. Position Vector and Coordinates of a Point

• If a point *P* has coordinates (a, b), the position vector of *P* is $\overrightarrow{OP} = \begin{pmatrix} a \\ b \end{pmatrix}$.

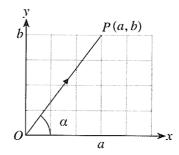
2. Equal and Negative Vectors

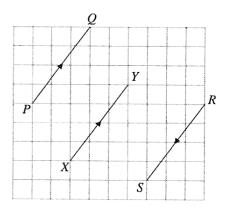
• Equal vectors are vectors with the same magnitude and direction.

 $\overrightarrow{PQ} = \overrightarrow{XY}$

• Negative vectors are vectors with the same magnitude but are in opposite directions.

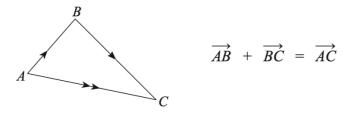
$$\overrightarrow{PQ} = -\overrightarrow{RS}$$





3. <u>Sum and Differences of Two Vectors</u>

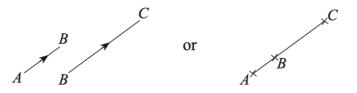
A. Triangular Law of Addition



B. Subtraction of Vectors $\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$

4. Multiplying a Vector by a Scalar

For parallel vectors or points that are collinear, $\overrightarrow{AB} = k\overrightarrow{BC}$.



5. <u>Ratio of Areas of Triangles</u>

Method 1: If both triangles are similar

$$\frac{A_1}{A_2} = \left(\frac{l_1}{l_2}\right)^2$$

Method 2: If both share a common height,

$$\frac{A_{1}}{A_{2}} = \frac{\frac{1}{2} \times b_{1} \times \not h}{\frac{1}{2} \times b_{2} \times \not h} = \frac{b_{1}}{b_{2}}$$

Vectors (Worksheet 1)

1. Find the magnitude of the following vectors:

(a)
$$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

Answer: (a) _____ units

(b)
$$\overrightarrow{BC} = \begin{pmatrix} -12\\ -5 \end{pmatrix}$$

Answer: (b) _____ units

(c)
$$\overrightarrow{CD} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$$

Answer: (c) _____ units

2. Given that *A* is the point (-4, 6), *B* is the point (-1, y - 2) and $\overrightarrow{AC} = \begin{pmatrix} 4 \\ -10 \end{pmatrix}$, find (a) the position vectors of points *A* and *B*,

Answer: (a) $\overrightarrow{OA} = _, \overrightarrow{OB} = _$

(b) \overrightarrow{OC} and thus the coordinates of *C*,

Answer: (b) $\overrightarrow{OC} =$ _____, C = (_____, ___)

(c) \overrightarrow{AO} .

Answer: (c) $\overrightarrow{OA} =$

(d) Hence, using your answer in (c), find the value of y if A, B and C are collinear.

Answer: (d) *y* = _____

Answer: (a) $\left| \overrightarrow{PQ} \right| =$ _____ units

(b) the coordinates of Q,

Answer: (b) Q = (_____, ____)

R is a point on the *x*-axis such that point *R* is (x, 0). Find

(c) \overrightarrow{PR} in terms of x,

Answer: (c) $\overrightarrow{PR} =$

Since *P*, *Q* and *R* lies on the same straight line, it is given that $\overrightarrow{PQ} = k\overrightarrow{PR}$. Find (d) the value of *k*,

Answer: (d) *k* = _____

(e) the position vector of R.

4. Given that *A* is the point (5, 2) and $\overrightarrow{OB} = \begin{pmatrix} 6 \\ -3 \end{pmatrix}$. (a) Calculate $|\overrightarrow{AB}|$.

Answer: (a) $\left| \overrightarrow{AB} \right| =$ _____ units

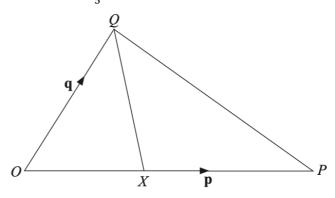
(b) Find the equation of the line *AB*.

Answer: (b) *y* = _____

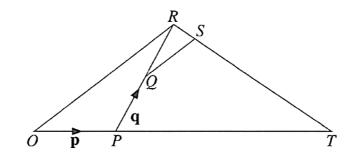
(c) Given that C is the midpoint of AB, find the coordinates of C.

Answer: (c) *C* = (_____, ____)

5. In the figure below, $\overrightarrow{OP} = p$ and $\overrightarrow{OQ} = q$. If $\overrightarrow{OX} = \frac{3}{5}\overrightarrow{OP}$, find \overrightarrow{QX} in terms of p and q.



6. In the diagram, OT = 3OP, RT = 6RS and Q is the midpoint of PR. It is given that $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{PQ} = \mathbf{q}$.

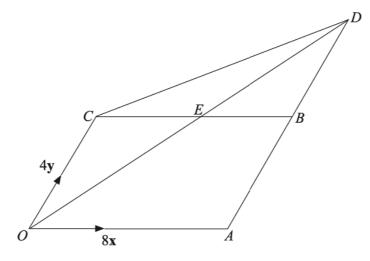


- (a) Express, as simply as possible, in terms of p and q,
 - (i) \overrightarrow{OR} ,
 - (ii) \overrightarrow{TR} ,
 - (iii) \overrightarrow{QS} .

Answer: (a)(i) $\overrightarrow{OR} =$ _____ (a)(ii) $\overrightarrow{TR} =$ _____ (a)(iii) $\overrightarrow{QS} =$ _____ (b) Determine if the lines OR and QS are parallel, showing your reasons clearly.

7. In the figure below, *OABC* is a parallelogram.

The vectors $\overrightarrow{OA} = 8\mathbf{x}$ and $\overrightarrow{OC} = 4\mathbf{y}$. The lines AB = 2BD and CE = EB.



- (a) Express the following vectors in terms of x and y.
 - (i) \overrightarrow{AC} ,

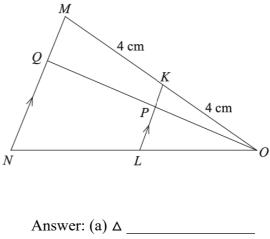
(ii) \overrightarrow{OD} .

Answer: (a)(ii) $\overrightarrow{OD} =$

(b) Find the value of the ratio of the area of triangle OCE to the area of triangle OAD.

Answer: (b) $\frac{\text{Area of triangle } OCE}{\text{Area of triangle } OAD} =$ ______

- 8. In the diagram below, OK = MK = 4 cm, MN is parallel to KL, OQ and KL intersect at Pand $\frac{KP}{PL} = \frac{1}{3}$.
 - (a) Name a triangle which is similar to $\triangle OMN$.



(b) Write down the numerical value of

(i) $\frac{\text{Area of } \triangle OKP}{\text{Area of } \triangle OKL}$

Answer: (b)(i) $\frac{\text{Area of } \triangle OKP}{\text{Area of } \triangle OKL} =$ _____

(ii) $\frac{\text{Area of } \triangle OKL}{\text{Area of } \triangle OMN}$

Answer: (b)(i) $\frac{\text{Area of } \triangle OKL}{\text{Area of } \triangle OMN} =$

9. Given that *P* is the point (1, 1) and $\overrightarrow{PQ} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ and $\overrightarrow{SR} = \begin{pmatrix} k \\ -12 \end{pmatrix}$, find (a) $|\overrightarrow{PQ}|$,

Answer: (a) $\left| \overrightarrow{PQ} \right| =$ _____ units

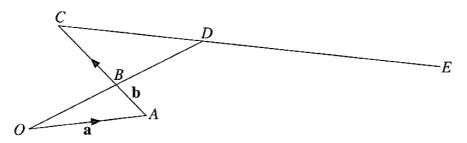
(b) the coordinates of Q,

Answer: (b) $Q = (_ , _)$

(c) the value of k if PQ is parallel to SR.

Vectors (Worksheet 2)

1. In the diagram below, $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$. It is given that $\overrightarrow{OB} = \overrightarrow{BD}$, $\overrightarrow{BC} = 2\overrightarrow{AB}$ and $\overrightarrow{DE} = 2\overrightarrow{CD}$.

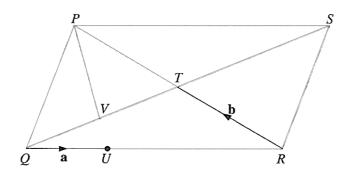


- (a) Express, as simply as possible, in terms of *a* and/or *b*,
 - (i) \overrightarrow{OB} ,
 - (ii) \overrightarrow{CD} ,
 - (iii) \overrightarrow{OD} ,
 - (iv) \overrightarrow{OE} .

Answer: (a)(i) $\overrightarrow{OB} =$ _____ (a)(i) $\overrightarrow{CD} =$ _____ (a)(iii) $\overrightarrow{OD} =$ _____ (a)(iv) $\overrightarrow{OE} =$ _____ (b) Hence, wite down two facts about O, A and E.

(1)		
(2)		

2. In the diagram below, *PQRS* is a parallelogram. The diagonals *PR* and *QS* intersect at *T*.



U is a point on *QR* such that QR = 3QU. *V* is the midpoint of QT. $\overrightarrow{QU} = a$ and $\overrightarrow{RT} = b$.

(a) Express as simply as possible in terms of *a* and/or *b*.

(i)
$$\overrightarrow{QP}$$
,

Answer: (a)(i) $\overrightarrow{QP} =$

(ii) \overrightarrow{QV} ,

(iii) \overrightarrow{PV}

Answer: (a)(iii) \overrightarrow{PV} = _____

(b) Show that PV produced passes through U.

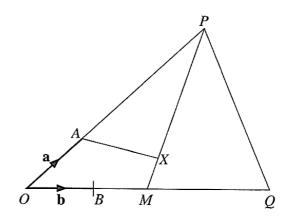
(c) Calculate the value of

(i)	Area of $\triangle PQS$
	Area of △ <i>PVS</i>

(ii) $\frac{\text{Area of } \triangle PVS}{\text{Area of } \triangle PQRS}$

Answer: (c)(i) $\frac{\text{Area of } \triangle PQS}{\text{Area of } \triangle PVS} =$ Answer: (c)(ii) $\frac{\text{Area of } \triangle PVS}{\text{Area of } \triangle PQRS} =$

- 3. In the diagram, $\overrightarrow{OA} = \frac{1}{3}\overrightarrow{OP}$ and $\overrightarrow{OB} = \frac{1}{4}\overrightarrow{OQ}$. *M* is the midpoint of *OQ*, and *MX* = $\frac{1}{5}MP$.
 - (a) Given that $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$, express as simply as possible, in terms of a and/or b,
 - (i) \overrightarrow{OP} ,
 - (ii) \overrightarrow{OM} ,
 - (iii) \overrightarrow{AQ} ,
 - (iv) \overrightarrow{MP} ,
 - (v) \overrightarrow{MX} .



Answer: (a)(i) $OP =$	
π	

(a)(ii) $\overrightarrow{OM} =$

(a)(iii) \overrightarrow{AQ} = _____

(a)(iv) \overrightarrow{MP} = _____

(a)(v) $\overrightarrow{MX} =$

(b) Prove that AX produced will pass through Q.

(c) Find the ratio of AX : XQ.

Answer: (b) AX : XQ =

(d) Given that the area of $\triangle OPQ = 30 \text{ cm}^2$, calculate the area of (i) $\triangle PMQ$,

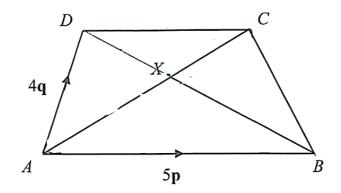
Answer: (d)(i) Area of $\triangle PMQ = _$ cm²

(ii) $\triangle PQX$,

(d)(ii) Area of $\triangle PQX = ___cm^2$

(iii) $\triangle OAB$.

(d)(iii) Area of $\triangle OAB = _$ cm²



ABCD is a quadrilateral.

$$\overrightarrow{AB} = 5\mathbf{p}, \overrightarrow{AD} = 4\mathbf{q}, DC : AB = 3 : 5, AX : AC = 5 : 8.$$

(a) Write down the following in terms of p and q.

(i) \overrightarrow{AC} ,

Answer: (a)(i) \overrightarrow{AC} = _____

(ii) \overrightarrow{BX} ,

Answer: (a)(ii) $\overrightarrow{BX} =$ _____

(iii) \overrightarrow{XD} .

Answer: (a)(i) $\overrightarrow{XD} =$

(b) Explain why *B*, *X* and *D* lie on a straight line.

- 5. (a) The position vector of point A is $\binom{-1}{5}$ and the position vector of point B is $\binom{2}{-3}$.
 - (i) Find the column vector of \overrightarrow{AB} .

Answer: (a)(i) $\overrightarrow{AB} =$ _____

(ii) Find $|\overrightarrow{AB}|$.

Answer: (a)(ii) $|\overrightarrow{AB}| =$ _____ units

(iii) Given that $\overrightarrow{AC} = 3\overrightarrow{AB}$, find the coordinates of *C*.

Answer: (a)(iii) *C* = (_____, ____)

- (b) The point *P* has coordinates (4, -2) and $\overrightarrow{PQ} = \begin{pmatrix} -8\\ 12 \end{pmatrix}$.
 - (i) Find the equation of the line *PQ*.

Answer: (b)(i) *y* = _____

(ii) The equation of another line 3x + 2y = 11. Show how you can tell that this line does **not** intersect the line *PQ*.

6. *A* is the point (1, 1), $\overrightarrow{AB} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$ and $\overrightarrow{AC} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$. *D* divides *BC* such that *BD* : *DC* = 1 : 1. (a) Find \overrightarrow{BC} .

Answer: (a) \overrightarrow{BC} = _____

(b) Find $|\overrightarrow{AD}|$.

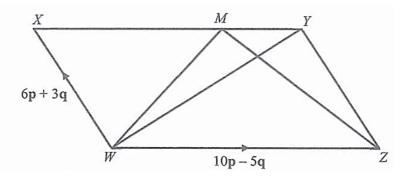
Answer: (b) $\left| \overrightarrow{AD} \right| =$ _____ units

(c) P is the point (3, 9)

Use the vectors to show whether or not *ABPC* is a parallelogram.

7. In the diagram, *WXYZ* is a parallelogram.

M is a point on *XY* such that *XM* : *MY* = 3 : 2, $\overrightarrow{WX} = 6\mathbf{p} + 3\mathbf{q}$ and $\overrightarrow{WZ} = 10\mathbf{p} - 5\mathbf{q}$.



(a) Find, in terms of p and/or q,

(i) \overrightarrow{WM} ,

Answer: (a)(i) $\overrightarrow{WM} =$

(ii) \overrightarrow{ZM}

(b) Find

(i) the area of triangle *WMX* : area of *WXYZ*,

Answer: (b)(i)

(ii) area of WXYZ, given that the area of triangle WMX is 8 units².

Answer: (b)(ii) area of WXYZ =_____ units²

(iii) Given that N is on WX produced such that ZMN is a straight line. Express \overrightarrow{WN} in terms of p and q.

Answer: (b)(iii) $\overrightarrow{WN} =$

- 8. Coordinates of A and B are (-3, 3) and (7, -13) respectively.
 - (a) Write \overrightarrow{AB} as a column vector.

Answer: (a) $\overrightarrow{AB} =$ _____

(b) Find the acute angle formed by the line *AB* with the horizontal axis.

Answer: (b) angle = ______°

(c) If the gradient of $AB = -\frac{2m}{n}$, express \overrightarrow{AB} in terms of *m* and *n*.

Answer: (C) \overrightarrow{AB} = _____

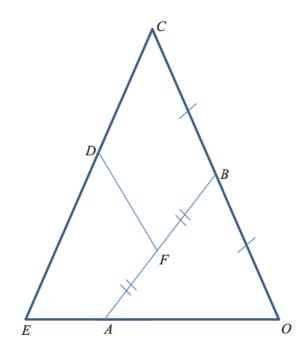
- 9. *A* is the point (-2, 5) and $\overrightarrow{BA} = \begin{pmatrix} -4 \\ 8 \end{pmatrix}$.
 - (a) Find the coordinates of point *B*.

Answer: (a) $B = (_ , _)$

(b) Calculate $|\overrightarrow{BA}|$.

Answer: (b) $\left| \overrightarrow{AB} \right| =$ _____ units

10. In the diagram below, OB = BC and AF = FB. It is given that OA : AE = 2 : 1 and ED : DC = 4 : 3. $\overrightarrow{OA} = 2a$ and $\overrightarrow{OB} = b$.



(a) Express, as simply as possible, in terms of \boldsymbol{a} and/or \boldsymbol{b} ,

(i) \overrightarrow{CE} ,

Answer: (a)(i) $\overrightarrow{CE} =$

(ii) \overrightarrow{CD} ,

Answer: (a)(ii) $\overrightarrow{CD} =$

(iii) \overrightarrow{BA} ,

Answer: (a)(iii) $\overrightarrow{BA} =$ _____

(iv) \overrightarrow{OF} ,

Answer: (a)(iv) $\overrightarrow{OF} =$ _____

(v) \overrightarrow{FD} .

Answer: (a)(ii) \overrightarrow{FD} = _____

(b) Find

(i) $\frac{\text{Area of } \triangle OBA}{\text{Area of } \triangle OBE}$

Answer: (b)(i) $\frac{\text{Area of } \triangle OBA}{\text{Area of } \triangle OBE} =$ _____

(ii) $\frac{\text{Area of } \triangle OBA}{\text{Area of } \triangle OCE}$

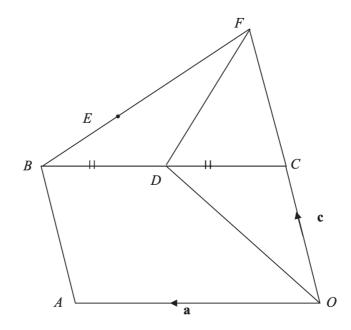
Answer: (b)(ii) $\frac{\text{Area of } \triangle OBA}{\text{Area of } \triangle OCE} =$

Vectors (Worksheet 3)

- 1. *OPQR* is a parallelogram such that $\overrightarrow{PQ} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ and *P* is the point (3, 2).
 - (a) Express \overrightarrow{RP} as a column vector.

Answer: (a) $\overrightarrow{RP} =$

(b) The point *J* lies on \overrightarrow{RP} produced such that $\overrightarrow{PJ} = m\overrightarrow{RP}$. Show that $\overrightarrow{OJ} = \begin{pmatrix} 3+m\\ 2-2m \end{pmatrix}$. 2. In the diagram, OABC is a parallelogram and D is the midpoint of BC. BE and OC produced intersecy at the point F. BE : BF = 1 : 3 and OC : OF = 1 : 2.
Let OA = a and OC = c.



(a) Express and simply the following vectors in terms of a and c.

(i)
$$\overrightarrow{AC}$$
,

Answer: (a)(i) $\overrightarrow{AC} =$

(ii) \overrightarrow{BF} ,

(iii) \overrightarrow{OD} ,

Answer: (a)(iii) $\overrightarrow{OD} =$ _____

(iv) \overrightarrow{OE} .

Answer: (a)(iv) $\overrightarrow{OE} =$

(b) State two facts about the vectors \overrightarrow{OD} and \overrightarrow{OE} from the results in (a).

- (c) Find the ratio of the areas of
 - (i) $\triangle ODF$ and $\triangle OEF$,

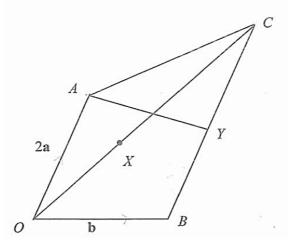
Answer: (c)(i)

(ii) $\triangle OCD$ and OABC

Answer: (c)(ii) _____

(iii) $\triangle OCD$ and OABF

Answer: (c)(iii)



In the diagram, $\overrightarrow{OA} = 2a$, $\overrightarrow{OB} = b$. BC is parallel to OA and $BC = \frac{3}{2}OA$. X is a point on OC such that $OX = \frac{2}{3}XC$. Y is the midpoint of BC.

(a) Express in terms of *a* and/or *b*, as simply as possible,

(i) \overrightarrow{AB} ,

Answer: (a)(i) $\overrightarrow{AB} =$

(ii) \overrightarrow{OC} ,

Answer: (a)(ii) $\overrightarrow{OC} =$

(iii) \overrightarrow{OX} ,

Answer: (a)(iii) $\overrightarrow{OX} =$

(iv) \overrightarrow{AX} ,

(b) What can you deduce about *A*, *X* and *B*?Justify your answer.

(c) AY produced meets OB at a point Z.

(i) Given that $\overrightarrow{AZ} = h\overrightarrow{AY}$, express \overrightarrow{AZ} in terms of **a**, **b** and **h**.

Answer: (c)(i) $\overrightarrow{AZ} =$

(ii) Given also that $\overrightarrow{OZ} = k\overrightarrow{OB}$, express \overrightarrow{OZ} in terms of *a*, *b* and *k*.

Answer: (c)(i) \overrightarrow{OZ} = _____

(iii) Hence, show that h = 4 and k = 4

(d) Find the value of,

(i)
$$\frac{Area \ of \ \triangle OAX}{Area \ of \ \triangle OAC}$$
,

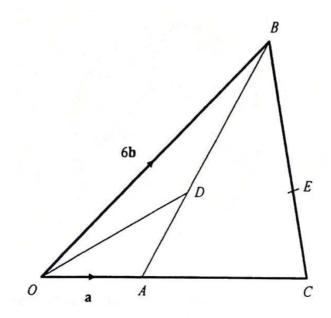
Answer: (d)(i) $\frac{Area \ of \ \triangle OAX}{Area \ of \ \triangle OAC} =$ _____

(ii) $\frac{Area \ of \ \triangle OBX}{Area \ of \ \triangle ABC}$

Answer: (d)(i) $\frac{Area \ of \ \triangle OBX}{Area \ of \ \triangle ABC} =$

4. *PQRS* is a parallelogram such that $\overrightarrow{PQ} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ and $\overrightarrow{PS} = \begin{pmatrix} 12 \\ 5 \end{pmatrix}$. Calculate $|\overrightarrow{PR}|$.

Answer: $\left|\overrightarrow{PR}\right| =$ _____ units



In the diagram, $\overrightarrow{OA} = a$, $\overrightarrow{OB} = 6b$ and , $\overrightarrow{OA} = \frac{1}{3}$, \overrightarrow{OC} . *D* is a point on *AB* such that 3AD = 2DB and *E* is a point on *BC* such that CE : EB = 4 : 5.

- (a) Express in terms of *a* and/or *b*, as simply as possible,
 - (i) \overrightarrow{BA} ,

Answer: (a)(i) $\overrightarrow{BA} =$

(ii) \overrightarrow{OD} ,

Answer: (a)(ii) $\overrightarrow{OD} =$

(iii) \overrightarrow{CB} ,

(iv) \overrightarrow{AE} ,

Answer: (a)(iv) \overrightarrow{AE} = _____

(b) Write down the relationship between OD and AE. Explain your answer.

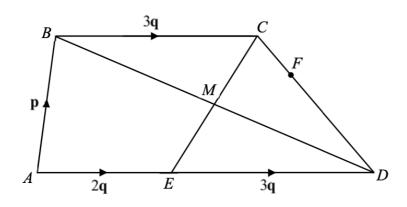
(c) Find the ratio of

(i) area of triangle *CAE* : area of triangle *AOD*,

Answer: (c)(i)

(ii) area of triangle *CAE* : area of triangle *AOB*.

Answer: (c)(ii)



ABCD is a quadrilateral and E is a point on AD. M is the point of intersection of BD and CE. $\overrightarrow{AB} = \mathbf{p}, \overrightarrow{AE} = 2\mathbf{q}$ and $\overrightarrow{BC} = \overrightarrow{ED} = 3\mathbf{q}$.

(a) Show that triangles *BMC* and *DME* are congruent. Give a reason for each statement you make.

(b) Express in terms of p and/or q, as simply as possible,

(i) \overrightarrow{AC} ,

Answer: (a)(i) $\overrightarrow{AC} =$

(ii) \overrightarrow{BD} ,

Answer: (a)(ii) $\overrightarrow{BD} =$

(iii) \overrightarrow{AM} ,

Answer: (a)(iii) $\overrightarrow{AM} =$

- (c) *F* is a point on *CD* such that CF : FD = 2 : 5.
 - (i) Explain why *A*, *M* and *F* lie on a straight line.

(ii) Find the ratio of area of triangle AME : area of triangle FMD.

Answer: (c)(ii)

7. Given that *ABC* is a triangle where $\overrightarrow{AB} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$ and $\overrightarrow{AC} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}$. (a) Find \overrightarrow{BC} .

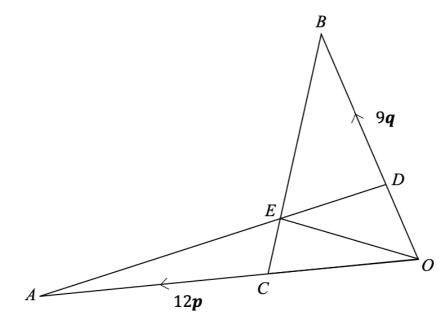
Answer: (a) \overrightarrow{BC} = _____

(b) Hence, or otherwise, show that $\angle BAC = 108.4^{\circ}$.

(c) Hence, calculate the area of $\triangle ABC$.

Answer: (c) area of $\triangle ABC =$ _____ units²

8. In the diagram, $\overrightarrow{OA} = 12\mathbf{p}$ and $\overrightarrow{OB} = 9\mathbf{q}$ It is given that 3DB = 2OB and OA = 3OC.



(a) Express in terms of *p* and/or *q*, as simply as possible,

(i)
$$\overrightarrow{BC}$$
,

Answer: (a)(i) $\overrightarrow{BC} =$

(ii) \overrightarrow{DA} ,

Answer: (a)(ii) $\overrightarrow{DA} =$

(b) Given that $\frac{\text{area of } \triangle ODE}{\text{area of } \triangle ODA} = \frac{1}{4}$, find \overrightarrow{OE} in terms of p and q.

Answer: (b) $\overrightarrow{OE} =$

(c) Find the value of $\frac{\text{area of } \triangle BDE}{\text{area of quadrilateral } EDOC}$.

Answer: (c) $\frac{\text{area of } \triangle BDE}{\text{area of quadrilateral } EDOC} =$