Index No.	Name	Form Class	Tutorial Class	Subject Tutor

ANGLO-CHINESE JUNIOR COLLEGE DEPARTMENT OF CHEMISTRY Preliminary Examination

CHEMISTRY Higher 2

Paper 2 Structured Questions

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, index number, form class, tutorial class and subject tutor's name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

Answer **all** questions in the spaces provided on the Question Paper. The use of an approved scientific calculator is expected, where appropriate. A Data Booklet is provided.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
Question no.	Marks
1	/7
2	/ 21
3	/ 15
4	/7
5	/ 11
6	/ 14
TOTAL	/ 75

This document consists of **21** printed pages and **1** blank page.

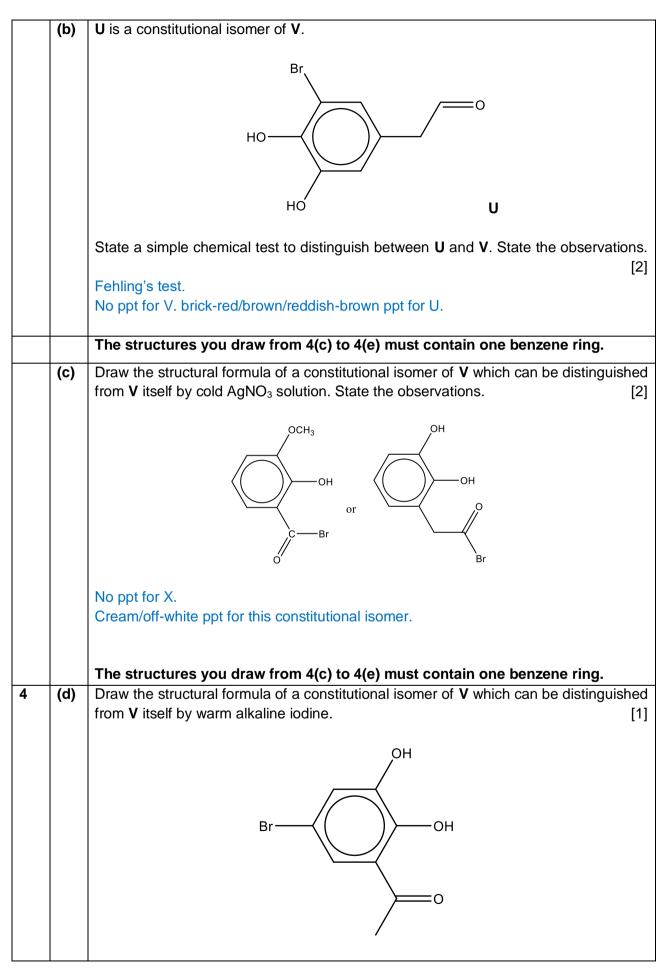
9729/02/Prelim/19 © ACJC 2019

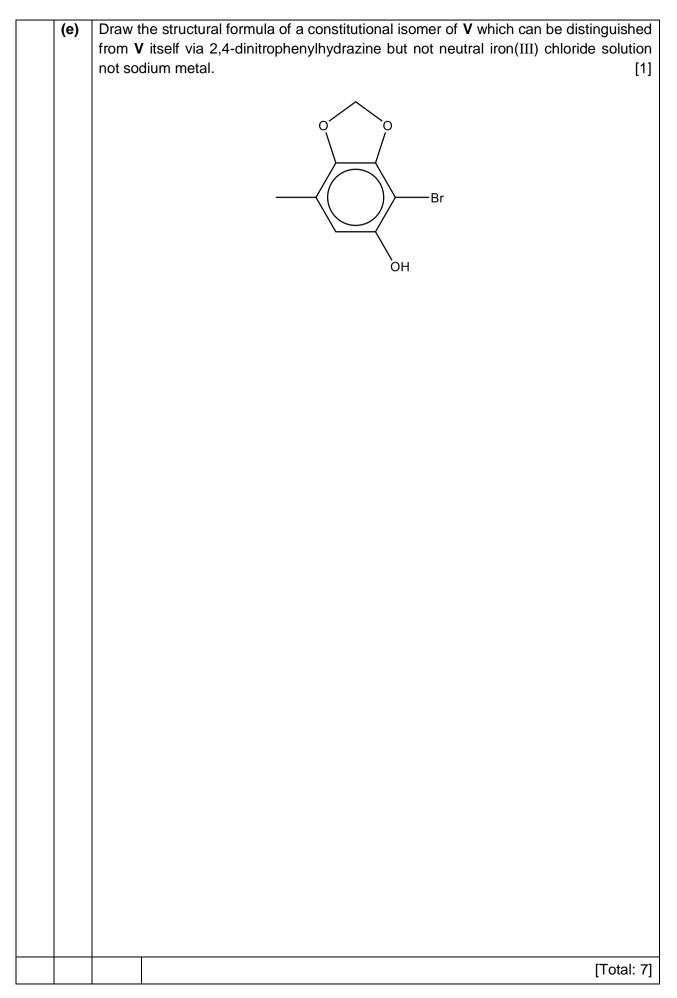
ANGLO-CHINESE JUNIOR COLLEGE Department of Chemistry 26 August 2019 2 hours

9729/02

1	(a)	The element aluminium and its compounds have some properties characteristic of metals, and some of non-metals. Aluminium hydroxide, for example, is known to be <i>amphoteric</i> .		
		(i)	Explain the meaning of the word "amphoteric". [1]	
			The ability to react with both acids and bases.	
		precip ions re	hium sulfate and calcium oxide are sometimes added to water supplies to co- itate suspended solids and bacteria. A small amount of aluminium-containing emains in solution and its presence in drinking water may contribute to the mental known as Alzheimer's disease.	
		(ii)	Write a balanced equation for the reaction that occurs when aluminium sulfate and calcium oxide are added to water, given that aluminium hydroxide is one of the products formed. [1]	
			$Al_2(SO_4)_3 + 3CaO + 3H_2O \rightarrow 2Al(OH)_3 + 3CaSO_4$	
		(iii)	By considering the nature of calcium oxide, explain why adding too much of it would increase the risk of contracting Alzheimer's disease. Write an equation to illustrate how "aluminium-containing ions remains in (drinking water)" as a result of adding too much calcium oxide. [2]	
			CaO dissolves slightly to form an alkaline solution. OH ⁻ thus formed reacts with $Al(OH)_3$ to form a soluble complex. $Al(OH)_3 + OH^- \rightarrow Al(OH)_4^-$	
1	(b)	Berylli	um oxide (BeO) is amphoteric, just like A <i>l</i> (OH) ₃ .	
		(i)	 Beryllium oxide reacts with sodium hydroxide according to the equation, 2NaOH + BeO → Na₂BeO₂ + H₂O Given the position of beryllium in the Periodic Table, explain how this reaction illustrates the amphoteric nature of beryllium oxide. [2] BeO: Gp 2 (metallic) oxide, expected to form basic oxide and to react with acid. but here it is reacting with an alkali, illustrating its acidic nature. 	

	(i	(ii)			To further illustrate its amphoteric nature, at 500 °C form compound F as the sole product . The n compounds are tabulated below.	
				compound molar m	ass / g mol ⁻¹	
				BeO	25	
				Na ₂ O	62	
				F	149	
				Write a balanced equation of the above reaction.	[1]	
				BeO + 2Na ₂ O → Na ₄ BeO ₃		
					[Total: 7]	
2				boratory, there are three bottles labelled X , Y and Z		
		Th	nree 1	bllowing reagents: $KI(aq), Cl_2(aq), and NaBr(aq)$ tests were carried out using the reagents in the rised in the table below:	e bottles. The results are	
			test	procedure	observations	
			1	mix reagent in bottle X with reagent in bottle Z	no change in colour	
			2	mix reagent in bottle Y with reagent in bottle Z	mixture turns brown	
			3	mix reagent in bottle Y with reagent in bottle X	mixture turns reddish- brown	
		(i)		By comparing relevant standard reduction poten Booklet, explain how it can be deduced that Y is aquineed for calculations.	ueous chlorine. There is no [1]	

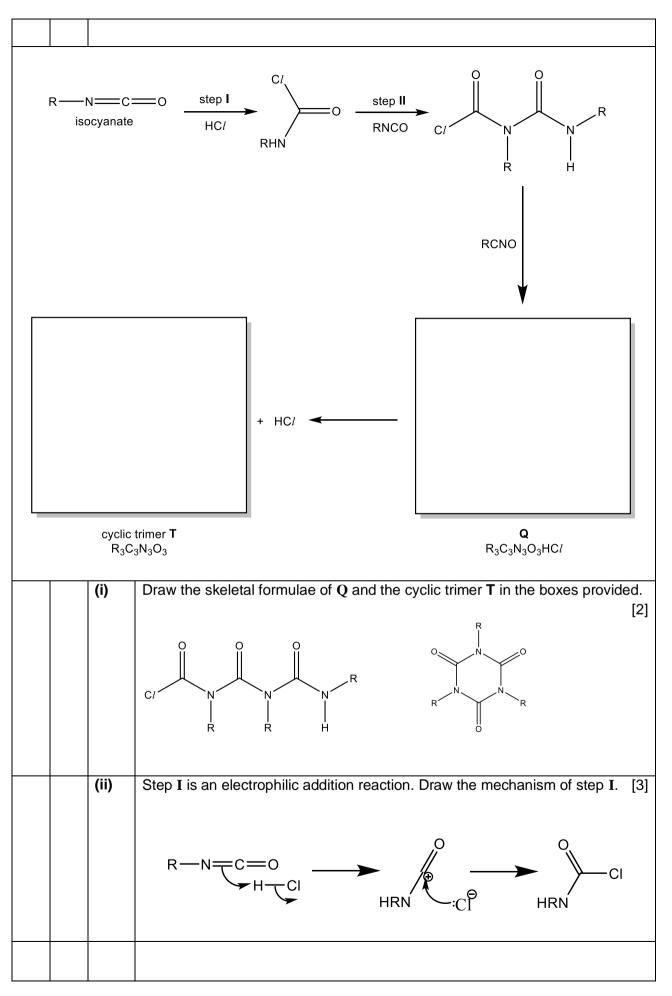

	T	(ii)	Tests 2 and 3 were executed to determine the reagents in bottles X and Z .
		(11)	
			Hexane was added to the resulting reaction mixture after the tests were conducted. The bottles were then shaken and allowed to stand.
			State the observations that will indicate whether the bottles contained KI(aq) or NaBr(aq) initially. [2]
			The bottle with orange-red organic layer contains NaBr (aq) initially. The bottle with violet / purple organic layer contains KI (aq) initially.
	(1)	0.1	
2	(b)	Sulfur	dichloride, SCl ₂ , is a cherry-red liquid at room temperature and pressure.
		SCl ₂ is	s formed from S_8 and Cl_2 .
		(i)	Explain why S_8 exists as a solid while Cl_2 exists as a gas at room temperature. [2]
			Both exist as non-polar simple covalent molecules.
			The size of the electron cloud of sulfur is so much larger hence the idid interactions amongst sulfur molecules are stronger than the idid amongst chlorine molecules.
			Therefore the melting point of sulfur is significantly higher than that of chlorine.
		(ii)	The formation of SCl_2 from S_8 and Cl_2 takes place in two steps.
			The first step involves disulfur dichloride, S_2Cl_2 , as an intermediate.
			$S_8 + 4Cl_2 \rightarrow 4S_2Cl_2$
			Write the equation of the second step. [1]
			$S_2Cl_2 + Cl_2 \rightarrow 2SCl_2$
		K sha	chemists speculate that the intermediate is not disulfur dichloride but K . res the same elemental mass percentages as sulfur dichloride and has a molar of 206.2 g mol ⁻¹ .
		(iii)	State the molecular formula of K . [1]
			S_2Cl_4
		(iv)	All the chlorine atoms in K are terminal. There are only two central atoms in K . The bond angles about each central atom are different.
			State the shape around each central atom and the respective bond angles. [2]
			See-saw (90° and/or 120°). (88° and/or 118°)
			and
			bent (105 [°] or 104.5 [°])
			0720/02/Drolim Exem/2010


4

2	(c)	Sulfury	yl chloride, SO_2Cl_2 , is commonly confused with thionyl chloride, $SOCl_2$.		
		The properties of these two sulfur oxychlorides are quite different. SO_2Cl_2 is a source of chlorine while $SOCl_2$ is a source of chloride ions for various organic reactions.			
		When	When heated, sulfuryl chloride decomposes endothermically as follows:		
			$SO_2Cl_2(g) \implies SO_2(g) + Cl_2(g)$		
			n experiment, 1.00 mol of SO ₂ C l_2 vapour was heated in a closed 4.00 dm ³ flask at K until equilibrium was established. The flask was then rapidly cooled to liquefy Cl_2 .		
			removing gaseous SO ₂ and C l_2 , excess water was then carefully added to the SO ₂ C l_2 , causing the following reaction to occur.		
			$SO_2Cl_2(l) + 2H_2O(l) \rightarrow H_2SO_4(aq) + 2HCl(aq)$		
		The re	esulting solution was made up to 250 cm ³ in a standard graduated flask.		
			rm ³ of this solution was titrated with 1.00 mol dm ⁻³ NaOH. 40.00 cm ³ of NaOH equired for complete neutralisation.		
		(i)	Write an expression for K_c for the equilibrium above and state its units. [2]		
			$K_{c} = [SO_{2}][Cl_{2}] / [SO_{2}Cl_{2}]$		
			mol dm ⁻³		
		(ii)	Calculate the equilibrium amount of SO_2Cl_2 , SO_2 , and Cl_2 in the original equilibrium at 500 K. Hence calculate a value for the K_c for the equilibrium. [4]		
			$n(H_2SO_4) = \frac{1}{4} (40.00/1000)(250/20.0) = 0.125$ $n(SO_2Cl_2)$ at eqm = 0.125		
			$n(SO_2)$ and $n(Cl_2)$ at eqm are $1.00 - 0.125 = 0.875$ each $K_c = (0.875)^2 / (0.125 \times 4) = 1.53 \text{ mol dm}^{-3}$		
2	(c)	(iii)	A student suggested to carry out the decomposition process at a higher temperature and high pressure to decrease the time required for the process. Discuss the effects of the proposed changes on the rate and the yield. [2]		
			At a higher temperature, both rate and yield would increase.		
			However, at high pressures, the rate (but not the yield) would increase as the position of equilibrium will be shifted to the LHS		
<u> </u>					

3	Malonic acid is an important precursor to some polyesters.		
			но он
	(a)		ic acid can be synthesised in more than one way.
		(i)	Suggest a three-step synthetic route from ethene to malonic acid. [5 1) aqueous bromine
			2) KCN (ethanolic) heat
			3) acidified KMnO ₄ (or $K_2Cr_2O_7$), heat with reflux
			Intermediates: 2-bromoethanol; 3-hydroxypropanenitrile.
		(ii)	Malonic acid can be made by reacting two moles of L with a mole of carbor suboxide.
			[1
			o==c==c==o
			carbon suboxide
			Identify L. H ₂ O
	(b)		ic acid behaves as a diprotic acid. The values of its K_{a1} and K_{a2} are 1.51 × 10 ⁻¹
		mol dr	m ⁻³ and 2.00 × 10 ⁻⁶ mol dm ⁻³ respectively.
			experiment, 15.0 cm ³ of a 0.100 mol dm ⁻³ solution of malonic acid was titrated
		agains	st 0.100 mol dm ⁻³ NaOH.
		(i)	Calculate the initial pH. [1
			$pH = -\log(1.51 \times 10^{-2}) = 1.91$
		(ii)	Calculate the volume of NaOH required for the first equivalence point. [1
			15.0 times $0.100 / 0.100 = 15.00 \text{ cm}^3$
			13.0 times 0.1007 0.100 = 13.00 cm
		(iii)	Write an equation to explain why the second equivalence point is above 7. [1
			$O_2CCH_2CO_2^- + H_2O$ \longrightarrow $HO_2CCH_2CO_2^- + HO^-$
		(iv)	Calculate the second equivalence pH. [2
			2^{nd} equivalence volume = 30.0 cm ³
			[$^{-}OOCCH_{2}COO^{-}$] at 2 nd equivalence point = 15/(30+15) X 0.100
			= 0.0333 mol dm ⁻³
			$K_b = 10^{-14} / K_{a2} = 5.00 \times 10^{-9} \text{ mol dm}^{-3}$
			$pOH = -\frac{1}{2} \log (5.00 \times 10^{-9} \times 0.0333) = 4.89$
			pH = 14 - pOH = 9.11

3	(b)	A buff	er is obtained after the addition of 12.00 cm ³ of NaOH solution.	
		(v)	Write an equation for the reaction that occurs when a drop of HNO_3 is added to this buffer.	ed [1]
			$HO_2CCH_2CO_2^- + H^+ \rightarrow HO_2CCH_2CO_2H$	
		(vi)	Calculate the pH of this buffer.	[2]
			n(malonic acid) remaining = [(15.0)(0.100)-(12.00)(0.100)] / 1000 = 3.00×10^{-4}	
			$n(HO_2CCH_2CO_2) = (12.00)(0.100) / 1000$ = 1.20 X 10 ⁻³	
			$pH = -\log(1.51 \times 10^{-3}) + \log(12.0/3.00) = 3 + \log(4/1.51) = 3.42$	
		(vii)	Another buffer is obtained after the addition of 22.50 cm ³ of NaOH solution Calculate its pH.	on. [1]
			$pH = pK_{a2} = -\log (2.00 \times 10^{-6}) = 6 - \lg 2.00 = 5.70$	
			[Total: 1	15]
4			b-brominated derivative of <i>ortho</i> -vanillin. <i>Ortho</i> -vanillins are used in the study s and as a synthetic precursor for pharmaceuticals.	of
			/OCH ₃	
			BrOH	
			сно V	
	(a)	Define	e the term "constitutional isomerism".	[1]
		-	ounds having the same molecular formula but different structural lae/different structures.	[']
	1	1		



5	(a)	(iii)	Given that the straight line graph for ln K_p versus T ⁻¹ is described by the
			equation
			$\ln K_{\rm p} = \left(\frac{-\Delta H^0}{R}\right) \frac{1}{T} + \frac{\Delta S^0}{R}$
			Calculate the standard entropy change of this reaction and explain the significance of its sign with respect to the reaction. [2]
			y-intercept = -19.5
			$\Delta S = (-19.5) \times 8.31 = -162 \text{ J mol}^{-1} \text{ K}^{-1}$
			The sign is negative because there is a decrease in the amount of gas. [
		have	absorbing carbon dioxide for some time, most if not all of the silver oxide would been depleted. To recharge the system, heat is applied into the system to form D again.
		(iv)	ΔG^0 and K_p are mathematically related by the equation
			$\Delta G^0 = - RT \ln K_p$
			Using the graph, estimate the minimum temperature at which the recharging of this system becomes spontaneous. [1]
			x-intercept = $2 \times 10^{-3} \text{K}^{-1}$
			minimum temperature = 1 / $(2 \times 10^{-3} \text{ K}^{-1}) = 500 \text{ K}$
5	(b)		er carbonate (relative formula mass = 275.8) is a sparingly soluble salt. At 25 °C, blubility is 0.032 g dm ⁻³ of water.
		113 30	
		(i)	Show that the value of the K_{sp} of silver carbonate at 25 °C is 6.25×10^{-12} . [1]
			$4(0.032 / 275.8)^3 = 6.25 \times 10^{-12} \text{ mol}^3 \text{ dm}^{-9}$
		(ii)	Calculate the solubility of silver carbonate in 0.100 mol dm ⁻³ silver nitrate at 25 °C. [1]
			$6.25 \times 10^{-12} = (0.100 + 2x)^2 x$ x = 6.25 × 10 ⁻¹⁰ mol dm ⁻³
		(iii)	1.00 cm ³ of a 1.20 × 10^{-5} mol dm ⁻³ silver nitrate solution was mixed with 3.00 cm ³ of a 7.45 × 10^{-5} mol dm ⁻³ sodium carbonate solution.
			Determine whether there would be precipitation of silver carbonate. [2]
			lonic Product = $(0.25 \times 1.20 \times 10^{-5})^2 (0.75 \times 7.45 \times 10^{-5})$ = 5.03 × 10 ⁻¹⁶ mol ³ dm ⁻⁹
			As IP < K_{sp} , there will not be precipitate of silver carbonate.

5	(c)	Silver carbonate can be reacted with ammonia to form silver fulminate, AgCNO, a powerful primary explosive.
		$4 \text{ Ag}_2\text{CO}_3 + 4 \text{ NH}_3 \rightarrow 4 \text{ AgCNO} + 6 \text{ H}_2\text{O} + 4 \text{ Ag} + \text{O}_2$
		Draw the dot-and-cross diagram of the fulminate ion given that the N is the central atom and the negative charge is on the carbon. [1]
		Θ • x ••
		$\stackrel{\Theta}{\bullet} \stackrel{\bullet}{\overset{\bullet}{\overset{x}}}_{x} \stackrel{N}{\overset{xx}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}}}}_{\bullet} \stackrel{X}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}}}_{\bullet} \stackrel{X}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}}}_{\bullet} \stackrel{X}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}}_{\bullet} \stackrel{X}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}}_{\bullet} \stackrel{X}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}}}_{\bullet} \stackrel{X}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}}_{\bullet} \stackrel{X}{\overset{\bullet}{\overset{\bullet}}}_{\bullet} \stackrel{X}{\overset{\bullet}{\overset{\bullet}}}_{\bullet} \stackrel{X}{\overset{\bullet}{\overset{\bullet}}}_{\bullet} \stackrel{X}{\overset{\bullet}{\overset{\bullet}}}_{\bullet} \stackrel{X}{\overset{\bullet}{\overset{\bullet}}}_{\bullet} \stackrel{X}{\overset{\bullet}{\overset{\bullet}}}_{\bullet} \stackrel{X}{\overset{\bullet}{\overset{\bullet}}}_{\bullet} \stackrel{X}{\overset{\bullet}{\overset{\bullet}}}_{\bullet} \stackrel{X}{\overset{X}}_{\bullet} \stackrel{X}{\overset{X}}}_{\bullet} \stackrel{X}$
		[Total: 11]

6 The isocyanate functional group is a constitutional isomer of the fulminate, which was mentioned in question 5(c). The isocyanate has the carbon atom instead of nitrogen atom as the central atom. Isocyanates are important industrial chemicals; they react with alcohols to produce polyurethane polymers, which are components of polyurethane foams, thermoplastic elastomers and polyurethane paints. (a) This part is about the synthesis of a diisocyanate from methylbenzene. NH_2 $\underbrace{\text{step I}}_{\text{conc. H}_2\text{SO}_4 + \text{conc. HNO}_3} \underbrace{\text{M}}_{\text{C}_7\text{N}_2\text{H}_6\text{O}_4} \underbrace{\text{step II}}_{\text{conc. HC}l + \text{Zn, heat}}$ followed by cold KOH (aq) heat $\dot{N}H_2$ step III $COCl_2$ NCO a di**isocyanate** νсο [1] (i) State the type of reaction in step I. Electrophilic substitution. (ii) Draw the structure of M. [1] NO_2 NO₂

© ACJC2019

6	(c)	When heated with HCl (aq), organic isocyanates (RNCO) are hydrolysed to the amine salt (RNH ₃ ⁺ Cl ⁻) and carbon dioxide.		
		$RNCO + HCl + H_2O \rightarrow RNH_3^+Cl^- + CO_2$		
		A 1.13 g sample of an organic isocyanate was treated in this way, and the carbon dioxide produced was absorbed in an excess of aqueous Ba(OH) ₂ , according to the equation shown.		
			$Ba(OH)_2(aq) + CO_2(g) \longrightarrow H_2O(l) + BaCO_3(s)$	
			mixture was filtered and the residue $BaCO_3$ washed and dried thoroughly. The s of the residue was 1.97 g.	
		(i)	Show that the molecular mass of the organic isocyanate is 113 g mol ⁻¹ . [1]	
			n(org. isocyanate) = $1.97 / 197.3 = 1.00 \times 10^{-2}$ molecular mass of org. isocyanate = $1.13 / (1.00 \times 10^{-2}) = 113.2$ g mol ⁻¹	
		(ii)	The R group in RNCO and $RNH_3^+Cl^-$ contains only carbon and hydrogen.	
			Use the molecular mass mentioned in (i) to suggest the molecular formula of the organic isocyanate. [1]	
			C ₆ H ₁₁ NO	
		(iii)	Given that a pure sample of this organic isocyanate rotates plane-polarised light, draw a possible stereochemical formula of it. [1]	
			NCO NCO	
			NCO	
			[Total: 14]	

17

~ End of Paper ~