Question 1	
(a) [2]	$T_0(x) = 1$ $T_1(x) = x$
	$T_2(\cos\theta) = \cos(2\theta) = 2\cos^2\theta - 1$ and thus $T_2(x) = 2x^2 - 1$.
(b) [3]	$T_{n+1}(x) + T_{n-1}(x)$ $= \cos((n+1)\cos^{-1}x) + \cos((n-1)\cos^{-1}x)$ $= 2\cos(n\cos^{-1}x)\cos(\cos^{-1}x)$ $= 2xT_n(x)$ Alternate Solution $T_{n+1}(\cos\theta) = \cos((n+1)\theta)$ $= \cos(n\theta)\cos\theta - \sin(n\theta)\sin\theta$ $= (\cos\theta)T_n(\cos\theta) + \frac{1}{2}[\cos((n+1)\theta) - \cos((n-1)\theta)]$ $= (\cos\theta)T_n(\cos\theta) + \frac{1}{2}[T_{n+1}(\cos\theta) - T_{n-1}(\cos\theta)]$ $T_{n+1}(\cos\theta) = 2(\cos\theta)T_n(\cos\theta) - T_{n-1}(\cos\theta)$ $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$
(c) [3]	We have $T_0(0) = 1$ and $T_1(0) = 0$. Substituting $x = 0$ into (b) we get $T_{n+1}(0) = -T_{n-1}(0)$ and thus $T_n(0) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ (-1)^{\frac{n}{2}} & \text{if } n \text{ is even} \end{cases}$ Alternatively, $T_n(0) = \cos\left(n\cos^{-1}0\right) = \cos\left(\frac{n\pi}{2}\right) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ (-1)^{\frac{n}{2}} & \text{if } n \text{ is even} \end{cases}$

(d)
$$T_n(x) = 0$$

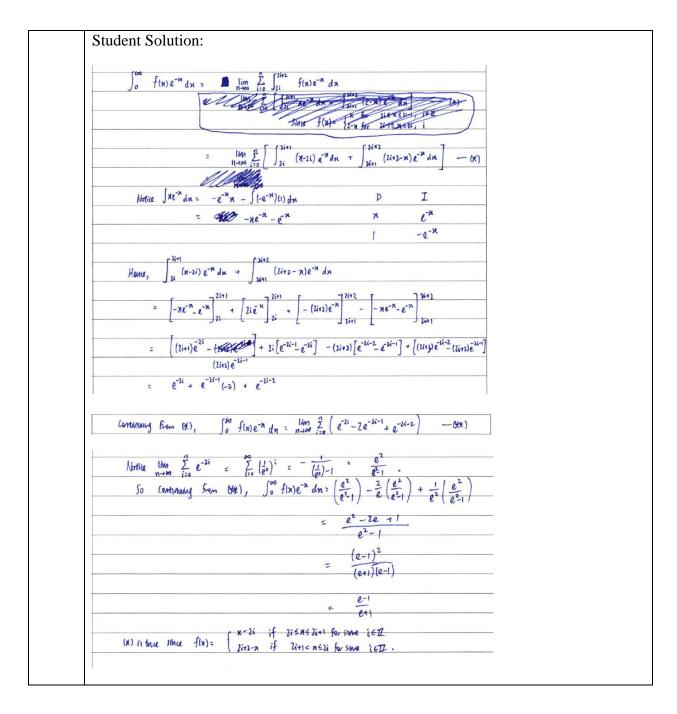
 $\Rightarrow 0 = T_n(\cos \theta) = \cos(n\theta)$
 $\Rightarrow n\theta = \frac{\pi}{2n} + k\pi, k \in \mathbb{Z}$
 $\Rightarrow \theta = \frac{\pi}{2n} + \frac{k\pi}{n}, k \in \mathbb{Z}$
Since the polynomial is of degree *n* (a simple recursion using the relation in (b)) we must have *n* roots to the equation.
The real numbers $\cos \theta_k = \cos\left(\frac{\pi}{2n} + \frac{k\pi}{n}\right), k \in \mathbb{Z}$ are therefore the roots of $T_n(x) = 0$. If we restrict *k* to be 0, 1, ..., *n* - 1, we have *n* distinct roots as the function cosine is a bijection from $(0,\pi)$ to $(-1,1)$.
(e) From (d), we know that
[4] $T_n(x) = a(x - x_0)(x - x_1)...(x - x_{n-1}), x_k = \cos\left(\frac{2k+1}{2n}\pi\right)$
Hence the desired product can be obtained by substituting 0 into the above relation and obtaining
 $T_n(0) = a(-x_0)(-x_1)...(-x_{n-1})$
 $= a(-1)^n x_0 x_1...x_{n-1}$
We need to find *a*. From (b), we can see recursively that $a = 2^{n-1}$. Therefore,
 $\prod_{k=0}^{n-1} \cos\left(\frac{2k+1}{2n}\pi\right) = x_0 x_1...x_{n-1}$
 $= \frac{T_n(0)}{a(-1)^n}$
 $= \left\{ \begin{array}{c} 0 & \text{if } n \text{ is odd} \\ \frac{(-1)^{\frac{n}{2}}}{2^{n-1}(-1)^n} = \frac{(-1)^{\frac{n}{2}}}{2^{n-1}} & \text{if } n \text{ is even} \end{array} \right\}$

Questi	Question 2	
(a) [2]	$S_1 = 2, S_2 = 3, S_3 = 4$	
(b)	The <i>well-spaced</i> subsets of $\{1, 2, 3,, n, n+1, n+2, n+3\}$ contains either the element	
[4]	n+3 or not.	
	Case 1: $n+3$ is an element in the subset.	
	Then elements $n+1$ and $n+2$ are not in the subset and the number of such <i>well-spaced</i> subsets is the number of <i>well-spaced</i> subsets, including the empty set, of the set $\{1, 2, 3,, n\} = S_n$	
	Case 2: $n+3$ is not an element in the subset.	
	Thus the number of such <i>well-spaced</i> subsets is the number of <i>well-spaced</i> subsets, including the empty set, of the set $\{1, 2, 3,, n, n+1, n+2\} = S_{n+2}$	
	Hence $S_{n+3} = S_{n+2} + S_n$.	
	$S_4 = S_3 + S_1 = 6$	
	$S_5 = S_4 + S_2 = 9$	
	$S_6 = S_5 + S_3 = 13$	
	$S_7 = S_6 + S_4 = 19$	
	$S_8 = S_7 + S_5 = 28$	
(c) [4]	Let <i>A</i> be the set of <i>k</i> -combinations of $\{1, 2, 3,, n\}$ that are well-spaced and <i>B</i> be the set of <i>k</i> -combinations of <i>Y</i> , where $Y = \{1, 2, 3,, n - 2k + 2\}$.	
	For any $a \in A$, $a = \{a_1, a_2,, a_k\}$ where we assume WLOG $a_1 < a_2 < < a_k$.	
	We define a mapping f: $A \to B$ such that $f(a) = \{a_1, a_2 - 2, a_3 - 4,, a_k - 2(k-1)\}$.	
	Note that $f(a) \in B$ since $a_k \le n \Longrightarrow a_k - 2(k-1) \le n - 2(k-1)$.	
	Clearly, f is injective since if $a, b \in A$ and $a \neq b$, then $a_i \neq b_i$ for at least one <i>i</i> , so therefore $a_i - 2(i-1) \neq b_i - 2(i-1)$, so $f(a) \neq f(b)$.	
	For each $p = \{p_1, p_2,, p_r\} \in B$, consider $q = \{p_1, p_2 + 2,, p_k + 2(k-1)\}$.	

We need to show that q is well-spaced, which is clear since the difference between any 2 consecutive terms is at least 3(2+1). Hence $q \in A$ and f(q) = p which implies that f is surjective. Thus, f is a bijection and $|A| = |B| = \binom{n-2k+2}{k}$. (shown) **Alternative Solution** From the set $\{1, 2, 3, ..., n\}$, if the number is selected, it is represented by '0', otherwise, it is represented by '1'. That is, if the subset formed is $\{1, 4, 8\}$, its corresponding binary string representation of length *n* is 011011101111....111. For the subset to be *well-spaced*, the binary string representation for such a subset must have at least two '1's between any two consecutive '0's. Thus, to obtain a *well-spaced* subset of size k, there are k '0's and (n-k) '1's. For the (n-k) '1's, 2(k-1) of them are placed as a pair between the '0's as shown below. 0110110110...0110 The remaining (n-k-2(k-1)) = n-3k+2 of the '1's can be placed in any of the (k+1) positions (i.e. before/after/in between the '0's). 0110110110...0110 $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$ ↑ The number of ways this can be done is the same as the number of ways to distribute (n-3k+2) identical objects into (k+1) distinct boxes. Hence $T_{n,k} = \binom{n-3k+2+(k+1)-1}{(k+1)-1} = \binom{n-2k+2}{k}.$ To have a well-spaced subset, we need (**d**) [2] $n-2k+2 \ge k \Longrightarrow k \le \frac{n+2}{2}$ $S_n = \sum_{k=0}^{\left\lfloor \frac{n+2}{3} \right\rfloor} T_{n,k} = \sum_{k=0}^{\left\lfloor \frac{n+2}{3} \right\rfloor} {n-2k+2 \choose k} \text{ (or equivalently } \sum_{k=0}^{\left\lfloor \frac{n}{3} \right\rfloor} {n-2k+2 \choose k} \text{).}$

Questi	Question 3	
(a)	Let $y = -x$. Then	
[3]	$\int_{-a}^{a} g(x) h(x) \mathrm{d}x$	
	$=\int_{a}^{-a} g(-y)h(-y) \left(-dy\right)$	
	$=\int_{-a}^{a}g(-y)h(-y) dy$	
	Therefore,	
	$\int_{-a}^{a} g(x) h(x) \mathrm{d}x$	
	$= \frac{1}{2} \left(\int_{-a}^{a} g(x) h(x) dx + \int_{-a}^{a} g(-x) h(-x) dx \right)$	
	$= \frac{1}{2} \left(\int_{-a}^{a} g(x) h(x) dx + \int_{-a}^{a} g(-x) h(x) dx \right)$	
	$=\frac{1}{2}\left(\int_{-a}^{a}\mathbf{h}(x)\big(\mathbf{g}(x)+\mathbf{g}(-x)\big)\mathrm{d}x\right)$	
	$=\frac{1}{2}\int_{-a}^{a}\mathbf{h}(x) \mathrm{d}x$	
	$=\int_0^a h(x) dx$ since h is even	
(b) [4]	Let $h(x) = \sqrt{1 - x^2}$ which is even and $g(x) = \frac{1}{1 + 2^x}$.	
	Then $g(x) + g(-x) = \frac{1}{1+2^x} + \frac{1}{1+2^{-x}} = \frac{1}{1+2^x} + \frac{2^x}{2^x+1} = 1.$	
	Hence	
	$\int_{-1}^{1} \frac{\sqrt{1-x^2}}{1+2^x} \mathrm{d}x = \int_{0}^{1} \sqrt{1-x^2} \mathrm{d}x = \frac{\pi}{4}$	
	since the integral represents the area of the quadrant of the circle with radius 1 centered at the origin.	

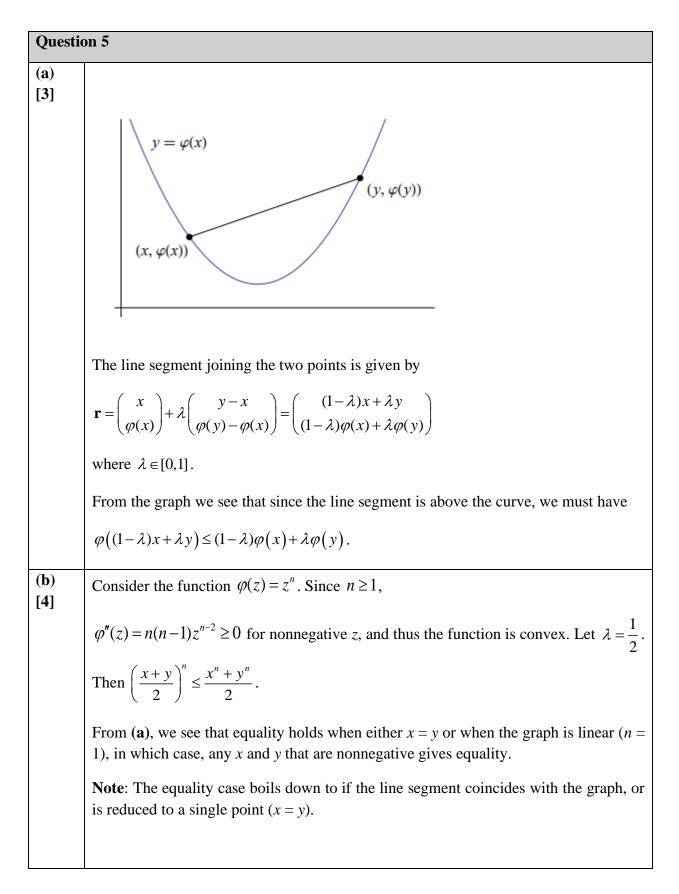
(c)	Let us first evaluate
[8]	
	$\int_{0}^{2} f(x) e^{-x} dx$
	$= \int_{0}^{1} x e^{-x} dx + \int_{1}^{2} (2-x) e^{-x} dx$
	$= \left[-xe^{-x} \right]_{0}^{1} + \int_{0}^{1} e^{-x} dx + \left[-(2-x)e^{-x} \right]_{1}^{2} - \int_{1}^{2} e^{-x} dx$
	$= -e^{-1} + \left[-e^{-x} \right]_{0}^{1} + e^{-1} - \left[-e^{-x} \right]_{1}^{2}$ $= -e^{-1} + 1 + e^{-2} - e^{-1}$
	$=1 - \frac{2}{e} + \frac{1}{e^2} = \left(1 - \frac{1}{e}\right)^2$
	Then
	$\int_{0}^{\infty} f(x)e^{-x} dx = \lim_{n \to \infty} \int_{0}^{2n} f(x)e^{-x} dx$
	$= \lim_{n \to \infty} \sum_{k=1}^{n} \int_{2(k-1)}^{2k} f(x) e^{-x} dx$
	To evaluate each integral we perform a substitution $x = 2(k-1)+t$ to bring each integral back to the interval [0, 2]. We thus obtain
	$\lim_{n \to \infty} \sum_{k=1}^{n} \int_{0}^{2} f(2(k-1)+t) e^{-2(k-1)+t} dt$
	$= \lim_{n \to \infty} \sum_{k=1}^{n} \int_{0}^{2} f(t) e^{-2(k-1)-t} dt \text{ since f is 2-periodic}$
	$= \lim_{n \to \infty} \sum_{k=1}^{n} e^{-2(k-1)} \int_{0}^{2} f(t) e^{-t} dt$
	$= \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{e^2} \right)^{k-1} \left(1 - \frac{1}{e} \right)^2$
	$= \left(1 - \frac{1}{e}\right)^2 \frac{1}{1 - \frac{1}{e^2}} = \frac{1 - \frac{1}{e}}{1 + \frac{1}{e}} = \frac{e - 1}{e + 1}$



Questio	Question 4	
(a)	$u_1 = a$	
[6]	$u_2 = b = \frac{b}{a}(a) = \frac{b}{a}u_1$	
	$u_{3} = \frac{u_{2}}{u_{1}} (2u_{1} - u_{2}) = \frac{b}{a} (2a - b) = \left(2 - \frac{b}{a}\right) u_{2}$	
	$\therefore c = 2 - \frac{b}{a}$	
	Hence if we let P_n be the statements $u_{2n} = \frac{b}{a}u_{2n-1}$ and $u_{2n+1} = \left(2 - \frac{b}{a}\right)u_{2n}$ for all	
	$n \in \mathbb{Z}^+$, the above shows that P_1 .	
	Assuming P_k for some $k \in \mathbb{Z}^+$, $u_{2k} = \frac{b}{a}u_{2k-1}$ and $u_{2k+1} = \left(2 - \frac{b}{a}\right)u_{2k}$.	
	Then	
	$u_{2(k+1)} = u_{2k+2}$	
	$=\frac{u_{2k+1}}{u_{2k}}(2u_{2k}-u_{2k+1})$	
	$= u_{2k+1} \left(2 - \frac{u_{2k+1}}{u_{2k}} \right)$	
	$= u_{2k+1}(2-c)$ Note: $2-c = 2-\left(2-\frac{b}{a}\right) = \frac{b}{a}$	
	$=\frac{b}{a}u_{2k+1}=\frac{b}{a}u_{2(k+1)-1}$	
	and similarly	
	$u_{2(k+1)+1} = u_{2k+3}$	
	$=\frac{u_{2k+2}}{u_{2k+1}}\left(2u_{2k+1}-u_{2k+2}\right)$	
	$= u_{2k+2} \left(2 - \frac{u_{2k+2}}{u_{2k+1}} \right)$	
	$=u_{2k+2}\left(2-\frac{b}{a}\right)$ Note: From induction hypothesis	
	$= cu_{2k+2} = cu_{2(k+1)}$	
	Thus $P_k \Rightarrow P_{k+1}$.	
	Since P_1 and $P_k \Rightarrow P_{k+1}$, by Mathematical Induction, P_n for all $n \in \mathbb{Z}^+$.	

	Student Solution:
	$(\alpha) \qquad \qquad$
	$\frac{U_{n+2}}{U_{n+1}} = \frac{U_n}{U_n} (2U_n - U_{n+1}) $
	$= 2 - \frac{U_{n+1}}{U_n}$
	$\frac{U_{n+2}}{U_{n+2}} = 2 - \frac{U_{n+2}}{U_{n+1}}$ $= 2 - \left(2 - \frac{U_{n+1}}{U_{n+2}}\right) = \frac{U_{n+1}}{U_{n+2}}$
	Let $V_h = \frac{U_{n+1}}{U_0}$, $V_{n+2} = V_n$ so V_n is periodic with period 2.
	$\frac{V_{2n-1} = V_{(2n-1) \mod 2} = V_1 = \frac{U_2}{U_1} = \frac{b}{a}}{b}$
	$\Rightarrow \frac{(l_{2n})}{(l_{2n-1})} = \frac{b}{a} \Rightarrow (l_{2n}) = \frac{b}{a} (l_{2n-1}) (proven)$
	$U_{3} = \frac{U_{2}}{U_{1}} (Z U_{1} - U_{2}) = \frac{b}{a} (Za - b)$
	$\frac{V_{2n} = V_{(2n) \mod 2+2} = V_2 = \frac{U_3}{U_2} = \frac{\frac{b}{a}(2a-b)}{b} = \frac{1}{a}(2a-b) = 2-\frac{b}{a}}{b}$
	$ = \underbrace{\mathcal{U}_{2n+1}}_{\mathcal{U}_{2n}} = 2 - \underbrace{b}_{\overline{\alpha}} \Rightarrow \mathcal{U}_{2n+1} = \left(2 - \underbrace{b}_{\overline{\alpha}}\right) \mathcal{U}_{2n} (\text{proven}) $
b)	From the above, we know that
[5]	$u_{2n} = \frac{b}{a}u_{2n-1} = \frac{bc}{a}u_{2n-2} = \dots = \left(\frac{bc}{a}\right)^{n-1}u_2 = b\left(\frac{bc}{a}\right)^{n-1}$
	and
	$u_{2n-1} = cu_{2n-2} = \frac{bc}{a}u_{2n-3} = \dots = \left(\frac{bc}{a}\right)^{n-1}u_1 = a\left(\frac{bc}{a}\right)^{n-1}.$
	Thus the series is made up of 2 geometric series essentially (with same common ratio), and we know that the series converges if
	$\left \frac{bc}{a}\right < 1 \Leftrightarrow -1 < 2\left(\frac{b}{a}\right) - \left(\frac{b}{a}\right)^2 < 1.$
	Solving this inequality in terms of b/a , we have from GC,
	$\frac{b}{a} \in (-0.414, 2.41) \setminus \{0, 1\}$, or equivalently $1 - \sqrt{2} < \frac{b}{a} < 1 + \sqrt{2}, \ \frac{b}{a} \neq 0, 1$ (exact)

(c)
[3] For
$$u_n$$
 to have period 4,
 $u_{2n+3} = u_{2n-1}$ and $u_{2n+4} = u_{2n}$. From above, we know that
 $u_{2n+3} = \left(\frac{bc}{a}\right)^2 u_{2n-1}$ and $u_{2n+4} = \left(\frac{bc}{a}\right)^2 u_{2n}$. Thus we require $\left(\frac{bc}{a}\right)^2 = 1$.
However if $\frac{bc}{a} = 1$, the sequence would be periodic with period 2, and thus we
need $\frac{bc}{a} = -1$. This gives us $\frac{1}{2}\left(\frac{b}{a}\right) - \left(\frac{b}{a}\right)^2 = -1$.
From (b), we see that this gives us $\frac{b}{a} = 1 - \sqrt{2}$ or $1 + \sqrt{2}$.



(c) When a or b is 0, the LHS of the inequality is 0 and the inequality holds trivially. So suppose a and b are positive. Consider the function $\varphi(z) = e^z$, which is convex since $\varphi''(z) = e^z > 0$. Let $\lambda = \frac{1}{q}$, then $e^{\frac{x}{p} + \frac{y}{q}} \le \frac{1}{p}e^x + \frac{1}{q}e^y$. Now let $x = \ln a^p$, $y = \ln b^q$ (since a and b are positive reals, x and y are well defined). This gives us $e^{\frac{\ln a^p}{p} + \frac{\ln b^q}{q}} \le \frac{1}{p}e^{\ln a^p} + \frac{1}{q}e^{\ln b^q}$ $\Rightarrow ab = e^{\ln a + \ln b} \le \frac{a^p}{p} + \frac{b^q}{q}$.

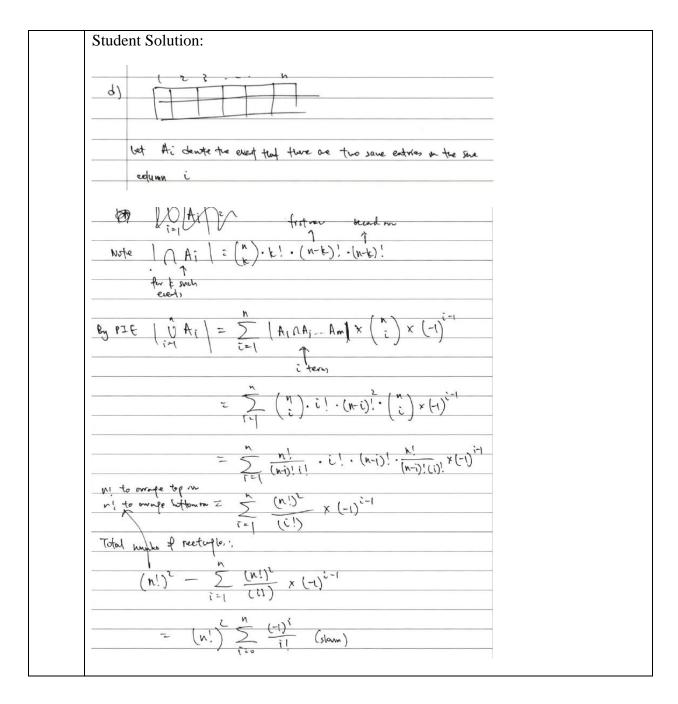
Quest	Question 6	
(a) [1]	Write down the numbers 1 to n in the 1st row in the order. For each subsequent row, cyclically permute the previous row, i.e. 1 2 1 2 2 3 1 1	
(b) [3]	N1 $N-1$ For a Latin square of order 2, there are just 2 of them, since the first row is either 1, 2or 2, 1 and the second row is the other.	
	For a Latin square of order 3, assume WLOG that the first row is 1, 2, 3. The second row is either 2, 3, 1 or 3, 1, 2. After inserting the 2^{nd} row, there is only one way to complete the 3^{rd} row. Hence 2 such Latin squares. Taking into account permutations, there are thus $2 \times 3! = 12$ such Latin squares.	
(c) [3]	 Look at the last row <i>n</i>. For each cell (<i>n</i>, <i>i</i>) in row <i>n</i>, look at column <i>i</i>. There are <i>n</i> – 1 distinct numbers in column <i>i</i>, and thus just one number, say <i>k</i> not present in the column. Write the number <i>k</i> in the cell. We claim that this algorithm creates a Latin square. To check this, it suffices to check whether any numbers are repeated in any row or column. By construction, we know that our choice of number does not cause any repetition of numbers in any column; as well, we know that no number is repeated in any row other than possibly the <i>n</i>-th row, because we started with a partial Latin square. 	
	Therefore, it suffices to check the <i>n</i> -th row for any repeated numbers. To do this, proceed by contradiction: i.e. suppose not, that there are two cells in the bottom row such that we've placed the same numbers in those two cells. This means that there is some number that we've never written in our last row. But this means that this number is used somewhere in all <i>n</i> columns within the first $n - 1$ rows, which forces some row in those first $n - 1$ to contain two copies of <i>k</i> by the Pigeonhole Principle. This is a contradiction.	
	Alternatively, consider the number that appears twice in the last row. Taking away the two columns they are in, the remaining $n - 2$ columns have thus $n - 1$ occurrences of this number (since each row must have 1 of the number). By the Pigeonhole Principle, one column must have 2 of this number, a contradiction.	

There are *n*! ways to arrange the first row. Let us consider the case where the first row **(d)** [5] is 1, 2, ..., *n*. For each i = 1, 2, ..., n, let A_i be the set of arrangements of the 2 rows such that iappears twice in the same column. The problem is thus to enumerate $|\overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_n}|$. We have clearly $|A_i| = (n-1)!$, $|A_i \cap A_i| = (n-2)!$, and so on, since fixing one, two (respectively) numbers leaves the remaining n - 1, n - 2 (respectively) numbers to be in the remaining positions with no restrictions. By the Principle of Inclusion and Exclusion, $\left|\overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_n}\right|$ $= |S| - |A_1 \cup A_2 \cup \ldots \cup A_n|$ $= |S| - \sum_{i=1}^{n} |A_i| + \sum_{i \le j} |A_i \cap A_j| - \sum_{i \le i \le k} |A_i \cap A_j \cap A_k| + \dots + (-1)^n |A_1 \cap A_2 \cap \dots \cap A_n|$ $n! - \binom{n}{1}(n-1)! + \dots + (-1)^k \binom{n}{k}(n-k)! + \dots + (-1)^n \binom{n}{n}(n-n)!$ $=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)!$ $=\sum_{k=0}^{n} (-1)^{k} \frac{n!}{k!(n-k)!} (n-k)!$ $=n!\sum_{k=0}^{n}\frac{(-1)^{k}}{k!}$

For each of the *n*! permutations, it suffices to rearrange the 2^{nd} row in the same way the first row is rearranged to obtain a $2 \times n$ Latin rectangle.

Hence the total number of $2 \times n$ Latin rectangles is

$$n \succeq n! \sum_{k=0}^{n} \frac{(-1)^{k}}{k!} = (n!)^{2} \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}$$



Questi	on 7
(a) [1]	From the first house, there are $(n - 1)$ choices for the subsequent house the postman goes to, then $(n - 2)$ for the next, etc. Hence the desired number is $(n - 1)!$.
	We down $Ni \ge 2$ $\forall i=1,2,,n-1.$ Suppose athemate $Ni \ge 1$ for some is 6 film, $n-1$. Inter the portion was intrusting at heaven 1, and ref to the first time. the portion travers the port of these between i and ref to in the direction $i \rightarrow int$ Since 151. Attended, he news crosses thus part of street again, so the always reason at the port mile of house it. Which is the first of the opporter house 1. Therefore he news reform to house 1, a contradiction. Table heaves 1, $Ni \ge \sum_{i=1}^{i} 2 = 2(n-1)$. Munimum length $\ge 2(n-1)$. A reme of length $\ge 2(n-1)$. I = (1+1,+1 + (n-1)

(c) [2]	Suppose $h_0, h_1,, h_n$ is a route of minimum length, $2(n - 1)$. Then we know from (b) that
	$ h_1 - h_0 + \dots + h_i - h_{i-1} = h_i - h_0 = n - 1$ and
	$ h_{i+1} - h_i + \dots + h_n - h_{n-1} = h_n - h_i = n - 1.$
	This means that the sequence $h_0, h_1,, h_n$ is strictly increasing up to $h_i = n$ and then strictly decreasing to $h_n = 1$.
	Hence it suffices to choose amongst $\{2,, n - 1\}$ which terms should be in the increasing portion and which terms are in the decreasing portion. Since there are 2 choices for each, there are altogether 2^{n-2} such routes of minimum length.
(d)	For a route $h_0, h_1,, h_n$, consider 2 sequences of indices $0 = b_1, b_2,, b_k, b_{k+1} = n$ and
[5]	$m_1,, m_k$ such that the sequence $h_0, h_1,, h_n$ is increasing between h_{b_1} and h_{m_1} ,
	decreasing between h_{m_1} and h_{b_2} , and in general, increasing between h_{b_i} and h_{m_i} ,
	decreasing between h_{m_i} and $h_{b_{i+1}}$. Then the length of the route satisfies
	$l = h_{m_1} - h_{b_1} + h_{m_1} - h_{b_2} + \ldots + h_{m_k} - h_{b_k} + h_{m_k} - h_{b_{k+1}}$
	$= 2\Big(\Big(h_{m_1} + \ldots + h_{m_k}\Big) - \Big(h_{b_1} + \ldots + h_{b_{k+1}}\Big)\Big)$
	We may assume WLOG that the two sequences $(h_{m_i}), (h_{b_i})$ are strictly increasing and
	decreasing respectively (suffices to relabel the terms if necessary). Then we have for all $1 \le i \le k$, $h_{m_i} \le n+1-i$, $h_{b_i} \ge i$. So
	$l = 2 \Big(h_{m_1} - h_{b_1} + h_{m_2} - h_{b_2} + + h_{m_k} - h_{b_k} \Big)$
	$\leq 2((n-1) + (n-3) + + (n-2k+1))$
	=2k(n-k)

	tic function $f(k) = k(n-k)$ for integers k, attains its maximum at $k = \left\lfloor \frac{n}{2} \right\rfloor$
and thus the	e desired maximum length is $\left\lfloor \frac{n^2}{2} \right\rfloor$. This maximum length is attained
considering	the route 1, <i>n</i> , 2, <i>n</i> – 1, 3,, $\lfloor \frac{n+1}{2} \rfloor$, 1.
Student Sol	ution:
Claum: No	$i = 2 \min(i, n-i) \forall i = 1, 2, \dots, n.$
	e postman travesses the part of street botween i and it, he is an his
	letter to a different house on the other side of this portion of the Street.
	ng i→it, he ridelinery a letter to one of the n-i hames
0	it1, 1+2,, n
Else when he	is going is it , he is the heading to are of the i hours
	1,2,, i.
The portman s	starts and ends at house 1, so he goes i - sitt as many tilkes as he
9000 it-itt.	. Therefore, shull be can at most g_{0} i \rightarrow its $(n-i)$ threes to go to each
enc of the cu	ni) lounes orthog one, and he can at most yo in hel (i) tilmes
to go to early	one of the i homen ort most one, he crows thus portion of the
street nt m	non 2 min (i,n-i) times.
:. Length Do	$M = N_1 + N_2 + \dots + N_{n-1}$
-, length Do	$u = N_1 + N_2 + \dots + N_{n-1}$ $\leq \underbrace{I}_{i+1} = 2 \min(i_1 n - i)$
length 🖗 i	$\leq \sum_{i=1}^{N-1} 2min(i_1n-i)$ $= \left[2(1+2i_1,i_{n-1}^{n-1})\right] = \left[2(1+2i_1,i_{n-1}^{n-1})\right] = \left[2(1+2i_1,i_{n-1}^{n-1})\right]$
: length D.	$\leq \sum_{i=1}^{N-1} 2min(i_1n-i)$ $= \begin{cases} 2(1+2i_1-i_1) & \text{if } n \text{ is odd} \\ (1+2i_1-i_1) & \text{if } n \text{ deven} \end{cases}$
:, length De	$\leq \sum_{i=1}^{N-1} 2min(i_1n-i)$ $= \begin{cases} 2(1+2i_{\dots}+\frac{n}{2}) & \text{if } n \text{ if } n \text{ if } odd \\ (1+2i_{\dots}+\frac{n}{2}) + (\frac{n-2}{2}+\frac{n-2}{2}+\dots+1) & \text{if } n \text{ if } n \text{ odd} \end{cases}$ $= \begin{cases} (n+n)(n+1)l_{2}^{2} & \text{if } 2n \\ 1 & \text{odd} \end{cases}$
: length De	$\leq \sum_{i=1}^{N-1} 2min(i_1n-i)$ $= \begin{cases} 2(1+2i+\frac{n-1}{2}) + (n-2i+\frac{n-2}{2}+\frac{n-2}{2}++1) & \text{if } n \text{ is odd} \end{cases}$ $= \begin{cases} u_{n+1}(u_{n-1}) + (n-2i+\frac{n-2}{2}+\frac{n-2}{2}++1) & \text{if } n \text{ is even} \end{cases}$ $= \begin{cases} u_{n+1}(u_{n-1}) + (n-2i+\frac{n-2}{2}+\frac{n-2}{2}++1) & \text{if } n \text{ is even} \end{cases}$
: length De	$\leq \sum_{i=1}^{N-1} 2min(i_1n-i)$ $= \begin{cases} 2(1+2i_{\dots}+\frac{n}{2}) & \text{if } n \text{ if } n \text{ if } n \text{ odd} \\ (1+2i_{\dots}+\frac{n}{2}) + (\frac{n-2}{2}+\frac{n-2}{2}+\dots+1) & \text{if } n \text{ if } n \text{ odd} \end{cases}$ $= \begin{cases} (n+1)(n+1)(\frac{1}{2}) & \text{if } 2 + n \end{cases}$
	$\leq \sum_{i=1}^{M-1} 2min (i_1n-i)$ $= \begin{cases} 2(1+2i_{\dots}+\frac{m-1}{2}) & \text{if } n \text{ is odd} \\ (1+2i_{\dots}+\frac{m-1}{2}) + (\frac{n-1}{2}+\frac{m-1}{2}+\dots+1) & \text{if } n \text{ is even} \end{cases}$ $= \begin{cases} (n_1n_1n_2n_1)(i_2) & \text{if } 2n_1 \\ \frac{n-1}{2} & \text{if } 2n_1 \\ \frac{n-1}{2} & \text{if } 2n_1 \end{cases}$ $= \begin{cases} \frac{n-1}{2} & \text{if } 2n_1 \\ \frac{n-1}{2} & \text{if } 2n_1 \end{cases}$
If Un, a	$\leq \prod_{i=1}^{d-1} 2min(i_{1}n-i)$ $= \begin{cases} 2(1+2i_{1}+\frac{n-1}{2}) & \text{if } n \text{ is odd} \\ (1+2i_{1}+\frac{n}{2}) + (\frac{n-1}{2}+\frac{n-1}{2}++1) & \text{if } n \text{ is even} \end{cases}$ $= \begin{cases} u_{11}n_{11}n_{11}n_{12}n_{13} & \text{if } 21n \\ (\frac{n}{2}+1n_{2}n_{13}n_{13}) & \text{if } 21n \\ (\frac{n}{2}+1n_{2}n_{13}n_{13}) & \text{if } 21n \\ \frac{n-1}{2} & \text{if } 21n \\ \frac{n-1}{2} & \text{if } 21n \end{cases}$ $[auth of \frac{n^{2}}{2} & \text{is uttainable}: go on the game 1, n, 2, n-1,, \frac{n-1}{2}, \frac{n+3}{2}, \frac{m!}{2}, 1.$
If itn, a length =	$\leq \prod_{i=1}^{N-1} 2min(i_{1}n-i)$ $= \begin{bmatrix} 2(1+2i_{1}+\frac{n-1}{2}) & f(1+2i_{1}+\frac{n-1}{2}) & f(1+2i_{1}+\frac{n-1}{2}) & f(1+2i_{2}+\frac{n-1}{2}) & f(1+2i_{2$
If itn, a length =	$\leq \prod_{i=1}^{d-1} 2min (i_{1}n-i)$ $= \begin{cases} 2(1+2i_{+1}n-i_{+1}) & \text{if } n \text{ is odd} \\ (1+2i_{+1}n-i_{+1}) + (n-i_{+1}+n-i_{+1}) & \text{if } n \text{ is even} \end{cases}$ $= \begin{cases} unn(n+1)(i_{1})(i_{1}) & \text{if } 2!n \\ (i_{2}+in)(n+1)(i_{2}) & \text{if } 2!n \\ (i_{2}+in)(n+1)(i_{2}) & \text{if } 2!n \\ (i_{2}-in)(n+1)(i_{2}) & \text{if } 1!n \\ (i_{2}-in)(n+1)(i_{2}-in)(i_{2$
If etn, a length = = =	$\leq \prod_{i=1}^{d-1} 2min (i, n-i)$ $= \begin{cases} 2(1+2++n_{2}^{n-1}) + (n-1) + n^{n-1} + n^{n-1} + \dots + 1) & \text{if } n \text{ is odd} \\ (m(1+2++n_{2}) + (n-1) + n^{n-1} + n^{n-1} + \dots + 1) & \text{if } n \text{ is even} \end{cases}$ $= \begin{cases} (mn(n+1)k_{2}) + j + 2n + \dots + 1 \end{pmatrix} & \text{if } n \text{ is even} \\ \frac{n^{n-1}}{2} + j + 2n + \dots + j + 2n + \dots + n^{n-1} + 2n + \dots + n^{n-1} + 2n + \dots + n^{n-1} + 2n + 2n + \dots + n^{n-1} + 2n + 2$
If Un, a length = = = Th 21n, a	$\leq \prod_{i=1}^{d-1} 2min (i, n-i)$ $= \begin{cases} 2(1+2i+\frac{n-1}{2}) & \text{if } n \text{ is odd} \\ (1+2i+\frac{n}{2}) + (\frac{n-1}{2} + \frac{n-1}{2} + + 1) & \text{if } n \text{ is even} \end{cases}$ $= \begin{cases} unn(n+1)(\frac{1}{2}) & \text{if } 2n \\ \frac{n-1}{2} & \frac{n-1}{2} \\ \frac{n-1}{2} \\ \frac{n-1}{2} & \frac{n-1}{2} \\ \frac{n-1}{2} $
If Un, a length = = = Th 21n, a	$\leq \prod_{i=1}^{d-1} 2min(i_{1}n-i)$ $= \begin{bmatrix} 2(1+2i_{+1}n_{2}^{n-1}) & \text{if } n \text{ is odd} \\ (1(2i_{+1}n_{2}^{n-1}) + (n_{2}^{n-1} + n_{2}^{n-1} + \dots + 1) & \text{if } n \text{ is oven} \\ = \begin{bmatrix} (nn)(n+i)(\frac{1}{2}) & \text{if } 2+in \\ (\frac{n}{2}+in)(n+i)(\frac{1}{2}) & \text{if } 2+in \\ (\frac{n}{2}+in)(n+i)(\frac{1}{2}) & \text{if } 2+in \\ = \begin{bmatrix} n_{2}^{n-1} & \text{if } 2+in \\ n_{2}^{n-1} & \text{if } 2+in \\ n_{2}^{n-1} & \text{if } 2+in \\ \end{bmatrix}$ $= \begin{bmatrix} n_{2}^{n-1} & \text{if } 2+in \\ \end{bmatrix}$ $= \begin{bmatrix} n_{2}^{n-1} & \text{if } 2+in \\ \end{bmatrix} = \begin{bmatrix} n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \end{bmatrix} + \begin{bmatrix} n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \end{bmatrix} + \begin{bmatrix} n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \end{bmatrix} + \begin{bmatrix} n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \end{bmatrix} + \begin{bmatrix} n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \end{bmatrix} + \begin{bmatrix} n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \end{bmatrix} + \begin{bmatrix} n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \end{bmatrix} + \begin{bmatrix} n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2}^{n-1} & n_{2}^{n-1} \end{bmatrix} + \begin{bmatrix} n_{2}^{n-1} & n_{2}^{n-1} \\ n_{2$
If Un, a length = = = Th 21n, a	$\leq \prod_{i=1}^{d-1} 2min (i, n-i)$ $= \begin{cases} 2(1+2i+\frac{n-1}{2}) & \text{if } n \text{ is odd} \\ (1+2i+\frac{n}{2}) + (\frac{n-1}{2} + \frac{n-1}{2} + + 1) & \text{if } n \text{ is even} \end{cases}$ $= \begin{cases} unn(n+1)(\frac{1}{2}) & \text{if } 2n \\ \frac{n-1}{2} & \frac{n-1}{2} \\ \frac{n-1}{2} $

Question 8	
(a) [1]	$\sigma(n) = \sigma(2^m) = 1 + 2 + \dots + 2^m = \frac{2^{m+1} - 1}{2 - 1} = 2(2^m) - 1 = 2n - 1.$
(b) [3]	It suffices to show the result is true if $a = p^m$, $b = q^n$, where p and q are distinct primes. The result will then follow by the Fundamental Theorem of Arithmetic. If $a = p^m$, $b = q^n$, then $\sigma(p^m) = 1 + p + + p^m$, $\sigma(q^n) = 1 + q + + q^n$. But $\sigma(ab) = \sigma(p^m q^n)$ $= 1 + p + + p^m$ $+ q(1 + p + + p^m)$ $+ q^n(1 + p + + p^m)$ $= (1 + p + + p^m)(1 + q + + q^n)$ $= \sigma(a)\sigma(b)$
(c) [3]	Let $n = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$, where the <i>p</i> 's are distinct odd primes (FTA). Then $2n-1 = \sigma(n) = \sigma\left(p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}\right)$ $= \sigma\left(p_1^{r_1}\right) \sigma\left(p_2^{r_2}\right) \dots \sigma\left(p_k^{r_k}\right)$ $= \left(1 + p_1 + p_1^2 + \dots + p_1^{r_1}\right) \dots \left(1 + p_k + p_k^2 + \dots + p_k^{r_l}\right)$ Since $2n - 1$ is odd, the product must be odd too. This implies that each term must be odd. Since the primes are odd, this means that we must have an odd number of terms in each bracket, and thus the exponents are even; this means that <i>n</i> is a perfect square.

	Student Solution:
	If n 15 odd, all its factors are odd.
	If s(n) = 2n-1 which is odd, it has an odd
	If $\mathcal{B}(n) = 2n - 1$ which is odd, it has an odd number of factors, since a sum of 2k odd numbers
	Beven.
	If n is not a perfect squares, nhas factors
	in pairs, i.e. a and a, which are all distinct. since a + a. Then n will have an
	even number of factors. Hence a mist be a
(d)	We have
[1]	
	$1 + \frac{1}{p} + \dots + \frac{1}{p^{a}} < \sum_{k=0}^{\infty} \frac{1}{p^{k}} = \frac{1}{1 - \frac{1}{2}} = \frac{p}{p - 1}.$
	P P $k=0$ P 1 p P 1
(e)	Suppose <i>n</i> is a prime power. Then
[3]	
	$\sigma(n) = \sigma(p^m) = \frac{p^{m+1} - 1}{p - 1} = 2(p^m) - 1$. This implies that
	p-1 $p-1$
	$p^{m+1} - 1 = 2p^{m+1} - 2p^m - p + 1$
	$\Rightarrow p^{m+1} - 2p^m = p - 2$
	$\Rightarrow p^{m}(p-2) = p-2$
	$\Rightarrow p = 2 \text{ or } p^m = 1$
	which are both not possible since n is odd and thus n is not perfect.
	Suppose <i>n</i> is only a product of two distinct primes.
	Then we have
	$2n-1 = \sigma(n) = \sigma\left(p^a q^b\right)$
	$=\sigma(p^a)\sigma(q^b)$
	$= (1+p+p^{2}++p^{a})(1+q+q^{2}++q^{b})$
	Dividing by <i>n</i> throughout we get
	$2 = \left(1 + \frac{1}{p} + \dots + \frac{1}{p^{a}}\right) \left(1 + \frac{1}{q} + \dots + \frac{1}{q^{b}}\right) + \frac{1}{p^{a}q^{b}}.$
	$\Big \overset{2}{=} \Big(\overset{1}{{}} p \overset{1}{{}} \frac{1}{p^{a}} \Big) \Big(\overset{1}{{}} \frac{1}{q} \overset{1}{} \frac{1}{q^{b}} \Big)^{+} \frac{1}{p^{a}q^{b}}.$

Assume WLOG that
$$3 \le p < q$$
. Then from (d),
 $1 + \frac{1}{p} + \dots + \frac{1}{p^a} \le 1 + \frac{1}{3} + \dots + \frac{1}{3^a} < \frac{3}{2}$.
Likewise,
 $1 + \frac{1}{q} + \dots + \frac{1}{q^a} \le 1 + \frac{1}{5} + \dots + \frac{1}{5^a} < \frac{5}{4}$.
Therefore
 $2 = \left(1 + \frac{1}{p} + \dots + \frac{1}{p^a}\right) \left(1 + \frac{1}{q} + \dots + \frac{1}{q^b}\right) + \frac{1}{p^a q^b}$
 $< \frac{3}{2} \times \frac{5}{4} + \frac{1}{3^2 \times 5^2} < \frac{15}{8} + \frac{1}{8} = 2$
a contradiction.