PU3 MATHEMATICS

Paper 9758/02

Section A: Pure Mathematics

Qn	Solution
1(i)	$y = vx^2 (1)$
[2]	$\frac{\mathrm{d}y}{\mathrm{d}x} = v(2x) + \frac{\mathrm{d}v}{\mathrm{d}x}(x^2)$
	dx dx dx
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2vx + x^2 \frac{\mathrm{d}v}{\mathrm{d}x} (2)$
	Subst (1) and (2) into $x \frac{dy}{dx} = x^3 + xy + 2y$,
	$x\left(2vx + x^2\frac{\mathrm{d}v}{\mathrm{d}x}\right) = x^3 + x\left(vx^2\right) + 2\left(vx^2\right)$
	$2vx^{2} + x^{3}\frac{dv}{dx} = x^{3} + vx^{3} + 2vx^{2}$
	$x^3 \frac{\mathrm{d}v}{\mathrm{d}x} = x^3 + vx^3$
	$\frac{\mathrm{d}v}{\mathrm{d}x} = 1 + v \text{ (shown)}$
1(ii)	Method 1
[3]	$\frac{dv}{dt}$ - 1 + v
	$\int dx dx$
	$\int \frac{1}{1+v} \mathrm{d}v = \int 1 \mathrm{d}x$
	$\ln\left 1+\nu\right = x+c$
	$ 1+v = e^{x+c}$
	$1 + v = \pm e^{x + c}$
	$1 + v = Ae^x$ where $A = \pm e^c$
	$1 + \frac{y}{x^2} = Ae^x$
	Subst $y = 1$ and $x = 1$,
	$1 + \frac{1}{1^2} = Ae$
	$A = \frac{2}{e}$
	$1 + \frac{y}{x^2} = \left(\frac{2}{e}\right)e^x$
	$1 + \frac{y}{x^2} = 2e^{x-1}$

Qn	Solution
	Method 2
	$\frac{\mathrm{d}v}{\mathrm{d}x} = 1 + v$
	$\int \frac{1}{1+v} \mathrm{d}v = \int 1 \mathrm{d}x$
	$\ln\left 1+\nu\right = x+c$
	$\ln\left 1+\frac{y}{x^2}\right = x+c$
	Subst $y = 1$ and $x = 1$,
	$\ln\left 1+\frac{1}{1^2}\right = 1+c$
	$c = \ln 2 - 1$
	$\ln\left 1+\frac{y}{x^2}\right = x + \ln 2 - 1$

Qn	Solution
2(a)	$f(x) = \sec^2 x$
[5]	$f'(x) = 2 \sec x (\sec x \tan x)$
	$=2\sec^2 x \tan x$
	$f''(x) = 2\left[\sec^2 x \left(\sec^2 x\right) + (\tan x) \left(2 \sec x \left(\sec x \tan x\right)\right)\right]$
	$=2\sec^4 x + 4\sec^2 x\tan^2 x$
	When $x = 0$, $f(0) = 1$
	$\mathbf{f}'(x) = 0$
	f''(0) = 2
	:. $f(x) = 1 + 0x + \frac{2}{2!}x^2 +$
	$=1+x^{2}+$

2(b)
[3]
$$(1+ax)^{-4} = 1 + (-4)(ax) + \frac{(-4)(-5)}{2!}(ax)^2 + ...$$

 $= 1 - 4ax + 10a^2x^2 + ...$
Since the coefficients of the x and x^2 terms in the expansion are equal,
 $-4a = 10a^2$
 $10a^2 + 4a = 0$
 $2a(5a+2) = 0$
 $a = 0$ (rejected since $a \neq 0$) or $a = -\frac{2}{5}$

Qn	Solution
3(a)	Method 1 (most used this)
[3]	$S_N = u_2 + u_3 + u_4 \dots + u_{N-1} + u_N$
	$=\sum_{n=2}^{N}u_{n}$
	$=\sum_{n=2}^{N}\ln\left(\frac{n-1}{n+1}\right)$
	$= \sum_{n=2}^{N} \left(\ln (n-1) - \ln (n+1) \right)$
	$= \ln 1 - \ln 3$
	$+\ln 2 - \ln 4$
	$+\ln 3 - \ln 5$
	$+\ln(N-3) - \ln(N-1)$
	$+\ln(N-2)-\ln N$
	$+\ln(N-1) - \ln(N+1)$
	$= \ln 1 + \ln 2 - \ln N - \ln (N+1)$
	$=\ln 2 - \ln \left(N \left(N + 1 \right) \right)$
	Method 2
	$S_N = u_2 + u_3 + u_4 \dots + u_{N-1} + u_N$
	$= \ln\left(\frac{1}{3}\right) + \ln\left(\frac{2}{4}\right) + \ln\left(\frac{3}{5}\right) + \dots + \ln\left(\frac{N-2}{N}\right) + \ln\left(\frac{N-1}{N+1}\right)$
	$= \ln\left(\frac{1 \times 2 \times 3 \times \dots \times (N-1)}{3 \times 4 \times 5 \times \dots \times (N-1) \times (N) \times (N+1)}\right)$
	$=\ln\left(\frac{2}{N(N+1)}\right)$
	$=\ln 2 - \ln \left(N \left(N + 1 \right) \right)$

Qn	Solution
3(b)	Method 1
(ii) [2]	$\sum_{n=1}^{\infty} \left(\frac{3x}{x+1}\right)^n = \sum_{n=1}^{\infty} \left(\frac{3(0.25)}{0.25+1}\right)^n$
	$=\sum_{n=1}^{\infty} \left(\frac{3}{5}\right)^n$
	$= \left(\frac{3}{5}\right)^{1} + \left(\frac{3}{5}\right)^{2} + \left(\frac{3}{5}\right)^{3} + \dots$
	$=\frac{\frac{3}{5}}{1-\frac{3}{3}}$
	$=\frac{3}{2}$
	$\frac{2}{3x}$
	$\sum_{n=1}^{\infty} \left(\frac{3x}{x+1}\right)^n = \frac{\overline{x+1}}{1 - \frac{3x}{x+1}}$
	$\frac{3x}{x+1}$
	$-\frac{1-2x}{x+1}$
	$=\frac{3x}{1-2x}$
	$=\frac{3(0.25)}{1-2(0.25)}$ since $x = 0.25$
	=1.5

Qn	Solution
4(i)	$2x^2 + y^2 = 20$
[2]	$\frac{x^2}{10} + \frac{y^2}{20} = 1$
	$\frac{x^2}{\left(\sqrt{10}\right)^2} + \frac{y^2}{\left(\sqrt{20}\right)^2} = 1$
	$\frac{x^2}{\left(\sqrt{10}\right)^2} + \frac{y^2}{\left(2\sqrt{5}\right)^2} = 1$

Qn	Solution
	$(-\sqrt{10},0)$ $(0,2\sqrt{5})$ $(\sqrt{10},0)^{x}$ $(0,-2\sqrt{5})$
4(ii) [1]	$2x^{2} + y^{2} = 20$ $4x + 2y \frac{dy}{dx} = 0$ $2y \frac{dy}{dx} = -4x$ $\frac{dy}{dx} = -\frac{4x}{2y} = -\frac{2x}{y} \text{ (shown)}$
4(iii) [5]	$ \underline{Method 1} $ Gradient of normal = $\frac{y}{2x}$ At (a,b) , Gradient of normal = $\frac{b}{2a}$ $ \frac{b}{2a} = \frac{b-0}{a-1} $ $ ab-b=2ab $ $ ab+b=0 $ $ b(a+1)=0 $ $ b=0 \text{ or } a=-1 $

Qn	Solution
	When $b = 0$, $2a^2 + (0)^2 = 20$
	$a = -\sqrt{10}$ or $\sqrt{10}$
	or
	When $a = -1$, $2(-1)^2 + b^2 = 20$
	$b^2 = 18$
	$b = -\sqrt{18}$ or $\sqrt{18}$
	$b = -3\sqrt{2}$ or $3\sqrt{2}$
	The four coordinates are $(\sqrt{10}, 0), (-\sqrt{10}, 0), (-1, -3\sqrt{2})$
	and $(-1, 3\sqrt{2})$.
	Method 2
	Gradient of normal = $\frac{y}{2x}$
	At (a,b) , Gradient of normal $=\frac{b}{2a}$
	Equation of normal at $P: y-b = \frac{b}{2a}(x-a)$
	$y = \frac{b}{2a}x - \frac{b}{2} + b$
	$y = \frac{b}{2a}x + \frac{b}{2}$
	Since normal passes through $(1, 0)$,
	$0 = \frac{b}{2a}(1) + \frac{b}{2}$
	0 = b + ab
	b(1+a) = 0
	b = 0 or $a = -1$

Qn	Solution
	When $b = 0$, $2a^2 + (0)^2 = 20$
	$a = -\sqrt{10}$ or $\sqrt{10}$
	or
	When $a = -1$, $2(-1)^2 + b^2 = 20$
	$b^2 = 18$
	$b = -\sqrt{18}$ or $\sqrt{18}$
	$b = -3\sqrt{2}$ or $3\sqrt{2}$
	The four coordinates are $(\sqrt{10}, 0), (-\sqrt{10}, 0), (-1, -3\sqrt{2})$
	and $(-1, 3\sqrt{2})$.

Qn	Solution
5(i)	Method 1
[2]	Perpendicular distance from the origin to <i>p</i>
	$= \left \frac{4}{\sqrt{1^2 + 2^2 + (-5)^2}} \right $ $= \frac{4}{\sqrt{30}} \text{ units}$
	Method 2 Note that $A(4, 0, 0)$ lies on p. Perpendicular distance from the origin to p
	$= \begin{vmatrix} 4 \\ 0 \\ 0 \end{vmatrix} \bullet \frac{\begin{pmatrix} 1 \\ 2 \\ -5 \end{pmatrix}}{\sqrt{1^2 + 2^2 + (-5)^2}} = \frac{4}{\sqrt{30}} \text{ units}$
5(ii) [3]	$\frac{\text{Method 1}}{l \text{ lies on } p \text{ means } l \text{ is parallel to } p \text{ and a point on } l \text{ lies on } p.$
	<i>l</i> is parallel to <i>p</i> means direction vector of <i>l</i> is perpendicular to normal of <i>p</i> :

Qn Solution а $2 \begin{vmatrix} 2 \\ -5 \end{vmatrix} \bullet \begin{vmatrix} 2a \\ 2 \end{vmatrix} = 0$ a + 4a - 10 = 0 $a = \frac{10}{5} = 2$ (shown) We need $\begin{pmatrix} 3 \\ -2 \\ b \end{pmatrix}$ to lie on p: $\begin{pmatrix} 3 \\ -2 \\ b \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 2 \\ -5 \end{pmatrix} = 4$ 3 - 4 - 5b = 45b = -5b = -1 (shown) Method 2 Equation of plane $p: x + 2y - 5z = 4 \Rightarrow r \bullet \begin{pmatrix} 1 \\ 2 \\ -5 \end{pmatrix} = 4$ Sub $\mathbf{r} = \begin{pmatrix} 3 \\ -2 \\ b \end{pmatrix} + \lambda \begin{pmatrix} a \\ 2a \\ 2 \end{pmatrix}$ into $\mathbf{r} \bullet \begin{pmatrix} 1 \\ 2 \\ -5 \end{pmatrix} = 4$: $\begin{pmatrix} 3+a\lambda\\-2+2a\lambda\\b+2\lambda \end{pmatrix} \bullet \begin{pmatrix} 1\\2\\-5 \end{pmatrix} = 4$ $3 + a\lambda - 4 + 4a\lambda - 5b - 10\lambda = 4$ $5a\lambda - 10\lambda - 5 - 5b = 0$ $(5a-10)\lambda + (-5-5b) = 0$ Comparing coefficient of λ : $5a - 10 = 0 \Rightarrow a = \frac{10}{5} = 2$ (shown) Comparing constants: $-5-5b = 0 \Rightarrow b = -1$ (shown) Let $\overrightarrow{OR} = \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$ be the position vector of a point on *l* for some $\lambda \in \mathbb{R}$. **5(iii)** [5] $\overrightarrow{QR} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} - \begin{bmatrix} -4 \\ 7 \\ 3 \end{bmatrix} = \begin{bmatrix} 7+2\lambda \\ -9+4\lambda \\ 4+2\lambda \end{bmatrix}$

Qn	Solution
	$\left \overline{QR}\right = \sqrt{\left(7 + 2\lambda\right)^2 + \left(-9 + 4\lambda\right)^2 + \left(-4 + 2\lambda\right)^2} = \sqrt{110}$
	$49 + 28\lambda + 4\lambda^{2} + 81 - 72\lambda + 16\lambda^{2} + 16 - 16\lambda + 4\lambda^{2} = 110$
	$24\lambda^2 - 60\lambda + 36 = 0$
	$2\lambda^2 - 5\lambda + 3 = 0$
	$(2\lambda-3)(\lambda-1)=0$
	$(2\lambda-3)=0$ or $(\lambda-1)=0$
	$\lambda = \frac{3}{2}$ or $\lambda = 1$
	When $\lambda = \frac{3}{2}$, $\overrightarrow{OC} = \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix} + \frac{3}{2} \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix}$
	When $\lambda = 1$, $\overrightarrow{OD} = \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix} + 1 \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}$
5(iv)	Let F be the foot of perpendicular from Q to l . Then QC and QD are the
[1]	hypothenuses of the right-angled triangles QFC and QFD respectively.
	Therefore the shortest distance from Q to l, QF, has to be smaller than QC and QD, which is $\sqrt{110}$.
	O = C = F = D
	$\underline{OR}:$
	Assume the shortest distance from Q to l is greater than $\sqrt{110}$. But there are points C and D found on l that are a distance of $\sqrt{110}$ away from Q, which contradicts the
	original assumption. Therefore the shortest distance from Q to l , has to be smaller
	than $\sqrt{110}$.
	<u>OR:</u> There should only be one unique point on <i>l</i> , the foot of perpendicular, that is the shortest distance from <i>Q</i> . Currently there are 2 points <i>C</i> and <i>D</i> found on <i>l</i> that are a distance of $\sqrt{110}$ away from <i>Q</i> . As the distance is shortened, <i>C</i> and <i>D</i> will converge to the foot of perpendicular.

10

Qn	Solution
6(i)	
[2]	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	x 3 4 5 6 7 8 9 P(X=x) $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ MORMAL EL DAT AUTO REAL PODTAN MR TO
6(ii) [2]	E(X) = 6
	$Var(X) = 1.7320^2$
	$= 2.9998 \approx 3.00 (3 \text{ s.f.})$

Section B: Probability and Statistics

© Millennia Institute

11

Qn	Solution
7(i)	$X \sim B(28, 0.96)$
[1]	P(X=28) = 0.31886
	-0.319(3 sf)
	- 0.517 (5 5.1.)
7(ii)	$x \qquad P(X=x)$
[1]	26 0.20925
	27 0.37200
	28 0.31886
	The most likely number of students who are present in school on a typical school
	day is 27.
7(iii)	Method 1
[2]	If there are more than 2 students not present, it means that there are less than 26
	students present.
	$P(X < 26) = P(X \le 25)$
	= 0.099896 (5 s.f.)
	= 0.0999 (3 s.f.)
	Method 2
	Let Y be the number of students who are not present in school, out of 28. Then V = D(28, 0.04)
	$I \sim B(28, 0.04)$.
	$P(Y > 2) = 1 - P(Y \le 2)$
	= 0.099896 (5 s.f.)
	= 0.0999 (3 s.f.)
7(:)	Lat Whathe number of classes where there was an investigation out of 16. Then
(1V)	Let <i>W</i> be the number of classes where there was an investigation, out of 16. Then W = R(16, 0.000896)
[0]	$W \approx D(10, 0.099890).$
	$\begin{pmatrix} 16 \end{pmatrix}$
	$P\left(W \ge \frac{10}{3}\right) = P\left(W \ge 6\right)$
	$=1-P(W\leq 5)$
	= 0.0032794 (5 s.f.)
	= 0.00328 (3 s.f.)

Qn	Solution
8(i)	Since A and B are mutually exclusive,
[1]	$\mathbf{P}(A \cap B) = 0$
8(ii)	Since A and C are independent,
[1]	

Qn	Solution
	$\mathbf{P}(A \mid C) = \mathbf{P}(A) = 0.4$
8(iii)	Since A and C are independent,
[3]	$\mathbf{P}(A \cap C) = \mathbf{P}(A) \times \mathbf{P}(C)$
	$= 0.4 \times 0.3$
	= 0.12
	Since B and C are independent, $P(B) \times P(C) = P(B \cap C)$ $P(B) \times 0.3 = 0.1$ $P(B) = \frac{1}{3}$ $A = \frac{1}{0.28}$ 0.23333 0.12 0.12 0.1 $0.3 - 0.12 - 0.1$ $= 0.08$ $C = A' \cap B' \cap C'$
	From venn diagram,
	$P(A' \cap B' \cap C') = 1 - 0.4 - \frac{1}{3} - 0.08$
	= 0.18667
	= 0.187 (3 s.f.)

9(i)	Required number of ways = ${}^{20}C_{4} \times 4!$
[1]	-116280
	-110200
9(ii)	Method 1: Complement
[3]	Number of ways for all males = ${}^{12}C_4 \times 4! = 11880$
	Number of ways for all females = ${}^{8}C_{4} \times 4! = 1680$
	Required number of ways $= 116280 - 11880 - 1680$
	=102720
	Method 2: Direct cases
	Number of ways for $1M3F = {}^{12}C_1 \times {}^{8}C_3 \times 4! = 16128$
	Number of ways for $2M2F = {}^{12}C_2 \times {}^8C_2 \times 4! = 44352$
	Number of ways for $3M1F = {}^{12}C_3 \times {}^{8}C_1 \times 4! = 42240$
	Total number of ways $= 16128 + 44352 + 42240$
	=102720
0(:::)	Mathad 1. Terneut frame to a bar
9(III) [3]	Method 1: Insert form teacher
[-]	XXXX
	► T
	\times
	Required Probability = $\frac{(6-1)! \times {}^4C_1 \times 4!}{(6-1)! \times {}^4C_1 \times 4!}$
	(10-1)!
	= 0.031746
	= 0.0317 (3 s.f.)

Qn	Solution
10(i)	<i>d</i> ▲
[1]	(80, 516)
	+
	+
	(10, 27)
	(10, 27)
10(ii)	d = av + b: r-value = 0.97883
[4]	$\ln d = av + b$: r-value = 0.98315
	Since the r-value for the model $\ln d = av + b$ is <u>closer to 1</u> , $\ln d = av + b$ is the better model.
	Using GC, $\ln d = 0.040564v + 3.2116$
	$\ln d = 0.0406v + 3.21 \ (3 \ \text{s.f.})$
10(iii)	$\ln d = 0.040564(64) + 3.2116$
[2]	$\ln d = 5.807696$
	d = 332.85 (5 s.f.)
	The estimated braking distance is 333 feet.
	Since <u>r is close to 1</u> and <u>$v = 64$ is within the given data range of v</u> $(10 \le v \le 80)$, the estimate is reliable.

Qn	Solution
10(iv)	1 kilometre = 0.621 miles
[2]	Then v (in miles/h) = 0.621 m (in km/h).
	$\ln d = 0.040564 (0.621m) + 3.2116$
	$\ln d = 0.025190m + 3.2116 \ (5 \ \text{s.f.})$
	$\ln d = 0.0252m + 3.21(3 \text{ s.f.})$

Qn	Solution
11(i)	Each scented candle has an equal chance of being selected. The selection of the
[1]	scented candles is independent of each other.
11(ii)	Unbiased estimates of the population mean, \overline{x}
[2]	$=\frac{69}{600}+600$
	30
	= 602.3
	Unbiased estimates of the population variance, s^2
	$=\frac{1}{859-\frac{69^2}{2}}$
	$29\begin{pmatrix} 005 & 30 \end{pmatrix}$
	= 24.148
	$\approx 24.1(3 \text{ s.f.})$
11(iii)	Let X be the mass, in grams, of a scented candle.
[5]	Let μ be the population mean mass of the scented candles.
	$H_0: \mu = 600$
	$H_1: \mu \neq 600$
	Under H ₀ , since $n = 30$ is large, by Central Limit Theorem, $\overline{X} \sim N\left(\frac{600}{30}, \frac{24.148}{30}\right)$
	approximately.
	Use z test at $\alpha = 0.01$.
	Using GC, p -value = 0.010359 > 0.01. Do not reject H_0 .
	There is insufficient evidence at 1% level of significance to conclude that the
	population mean mass of scented candles is not 600 grams.
11(iv)	The p -value of 0.0104 is the probability of observing from a sample, a sample mean
[1]	value at least as extreme as 602.3g, under the assumption that the population
	mean mass is ouug.

Qn	Solution
11(v)	$H_0: \mu = 600$
[4]	$H_1: \mu < 600$
	Under H_0 , $\overline{X} \sim N\left(600, \frac{25}{n}\right)$.
	Test statistics $Z = \frac{\overline{X} - 600}{\sqrt{\frac{25}{n}}}, Z \sim N(0,1)$
	Use z test at $\alpha = 0.05$.
	Test statistic value = 598.2-600
	Test statistic value $z = \frac{\sqrt{25}}{\sqrt{\frac{25}{n}}}$
	Critical value: -1.6448
	Critical region: $z \le -1.6448$
	Given conclusion: "The quality inspector concludes that he has overstated the mean
	mass of the scented candles" implies H_0 is rejected.
	Method 1:
	NORMAL FLOAT AUTO REAL RADIAN MP
	Plot1 Plot2 Plot3
	■NY1目 598.2-600
	J☆
	NORMAL FLOAT AUTO REAL RADIAN MP
	PRESS TO EDIT FUNCTION
	15 -1.394 16 -1.44
	17 -1.484 18 -1.527
	19 -1.569 20 -1.61
	21 -1.65 22 -1.689
	23 1.725 24 1.764 25 1.764
	11- 1.0497272301042
	$n \ge 21$
	Method 2:
	598.2 - 600 < 1.6448
	$\frac{1}{25} \le -1.0448$
	\sqrt{n}
	$-1.8 \le -1.6448 \sqrt{\frac{25}{n}}$
	$\sqrt{n} \ge 4.5688$
	$n \ge 20.9(3 \text{ s.f.})$, where <i>n</i> is a positive integer.

Qn	Solution
12(i)	Method 1
[1]	$P(\mu - \sigma \le S \le \mu + \sigma) \approx 0.68$
	$P(\mu \le S \le \mu + \sigma) \approx \frac{0.68}{2} = 0.34$
	<u>Method 2</u> $(u, u, v, v,$
	$P(\mu \le S \le \mu + \sigma) = P\left(\frac{\mu - \mu}{\sigma} \le Z \le \frac{\mu + \sigma - \mu}{\sigma}\right)$
	$= \mathbf{P} \left(0 \le Z \le 1 \right)$
	= 0.341
12(ii)	P(S < 56) = 0.10
[5]	$P\left(Z < \frac{56 - \mu}{\sigma}\right) = 0.10$
	$\frac{56-\mu}{\sigma} = -1.2815$
	$\mu - 1.2815\sigma = 56 (1)$
	P(S > 62) = 0.30
	$P\left(Z > \frac{62 - \mu}{\sigma}\right) = 0.30$
	$\frac{62-\mu}{\sigma} = 0.52440$
	$\mu + 0.52440\sigma = 62 (2)$
	Using GC,
	$\mu = 60.2577 \approx 60.3 \text{ (3 s.f.)}$
	$\sigma = 3.3224 \approx 3.32 (3 \text{ s.f.})$
12(iii)	Required Probability = $P(S_1 + S_2 + L_1 + L_2 + L_3 \ge 330)$
	Let $T = S_1 + S_2 + L_1 + L_2 + L_3$.
	E(T) = 2(50) + 3(75) = 325
	$\operatorname{Var}(T) = 2(2^2) + 3(3.5^2) = 44.75$
	$T \sim N(325, 44.75)$
	$P(T \ge 330) = 0.22740 \approx 0.227(3 \text{ s.f.})$
12(iv)	Required probability = $P(3S - 1 \le L_1 + L_2 \le 3S + 1)$
[4]	$= P(-1 \le L_1 + L_2 - 3S \le 1)$
	Let $X = L_1 + L_2 - 3S$

	E(X) = 2(75) - 3(50) = 0
	$\operatorname{Var}(X) = 2(3.5^2) + 3^2(2^2) = 60.5$
	$X \sim N(0, 60.5)$
	$P(-1 \le X \le 1) = 0.10229 \approx 0.102(3 \text{ s.f.})$
12(v)	Method 1 (Using sample mean)
[2]	Let $\overline{L} = \frac{L_1 + + L_{10}}{10}$.
	$E(\overline{L}) = 75$
	$\operatorname{Var}(\overline{L}) = \frac{3.5^2}{10} = 1.225$
	$\overline{L} \sim N(75, 1.225)$
	$P(\overline{L} < 74) = 0.18312 \approx 0.183(3 \text{ s.f.})$
	Math ad 2 (Using some la sum)
	$\frac{\text{Method 2 (Using sample sum)}}{(I + I)}$
	Required probability = P $\left(\frac{L_1 + \dots + L_{10}}{10} < 74\right)$
	$= P(L_1 + + L_{10} < 740)$
	Let $Y = L_1 + + L_{10}$.
	E(Y) = 10(75) = 750
	$\operatorname{Var}(Y) = 10(3.5^2) = 122.5$
	$Y \sim N(750, 122.5)$
	$P(Y < 740) = 0.18312 \approx 0.183(3 \text{ s.f.})$