Qn	Suggested Answer
1	
(a)(i)	The <i>linear momentum</i> of a body is defined as the product of its mass and its velocity
	and it is in the direction of the velocity.
(a)(ii)	The total final momentum of a system after a collision is equal to total initial momentum
	of the system before the collision
	provided no net external force acts on the system.
(b)(i)	Applying the principle of conservation of momentum,
	$m_A v_A + m_B v_B = 0$
	$2.0v_A = -1.0v_B$
	$v_B = -2.0v_A \cdots (1)$
	Applying law of conservation of energy,
	1_{m} $(2 + 1_{m})$ (2)
	$\frac{1}{2}m_{A}v_{A}^{2} + \frac{1}{2}m_{B}v_{B}^{2} = 12 \cdots (2)$
	Substitute equation (1) into equation (2),
	$\frac{1}{2}(2.0)v_{A}^{2} + \frac{1}{2}(1.0)(2.0v_{A})^{2} = 12$
	$v_{A}^{2} + 2.0v_{A}^{2} = 12$
	$ v_{A} = 2.0 \text{ m s}^{-1}$
	$ v_{B} = 4.0 \text{ m s}^{-1}$
(b)(ii)	A and B are moving towards each other.
	At any instant of time, the speed of B is twice that of A, distance covered by B is twice
	that of A when they collide.
	$x_{\rm A} + x_{\rm B} = 0.90$
	$x_{\rm A} + 2x_{\rm A} = 0.90$
	$x_{\rm A} = 0.30 \text{ m}$
2	
<u>(a)</u>	An <i>ideal gas</i> obeys the equation $pV = nRT$ where p is the gas pressure, V is the volume
(a)	of the gas, n is the number of moles of gas, R is the universal gas constant, and T is the
	thermodynamic temperature of the gas.
	There are no intermolecular forces between the gas molecules, therefore an ideal gas
	has no potential energy.
(b)(i)	PV = Nkt
	N, PV
	$N = \frac{PV}{kT}$
	$4.8 \times 10^5 \times 2.3 \times 10^4$
	$=\frac{4.8\times10^5\times2.3\times10^4}{100^3(65+273.15)\times1.38\times10^{-23}}$
	$= 2.37 \times 10^{24}$ (3 s.f.)
(b)(ii)	$E = \frac{3}{2}NkT$
	$=\frac{3}{2}(1.38\times10^{-23})(65+273.15)(2.37\times10^{24})$
	$= 1.66 \times 10^4 \text{ J (3 s.f.)}$

	1				
(b)(iii)	$\int \frac{1}{2}mc_{rms}^{2} = \frac{3}{2}kT$				
	Since <i>m</i> and <i>k</i> are constant,				
	$c_{ms}^{2} \propto T$				
	$\frac{c_{ms65}}{c_{ms75}} = \sqrt{\frac{(65+273.15)}{(75+273.15)}}$				
	<i>C</i> _{rms75}	(75+273.15)			
	= 0.986 (3 s.f.)				
(c)(i)	The prod	uct of pressure	and volume of	f the gas at B a	and C are the same.
(c)(ii)		work done on	heat supplied	increase in	
	process	the gas / $\times 10^4$ J	to the gas / \times 10 ⁴ J	internal energy $/ \times 10^4 \text{ J}$	
	$A\toB$	-1.92	4.80	2.88	
	$B\toC$	3.05	-3.05	0	
	$C \rightarrow A$	0	-2.88	-2.88	
	$WD_{AB} = -$	$-\rho(\Delta V)$			-
		4.8×10 ⁵ (6.3 -	- 2.3)×10 ⁴		
	= -	$-\frac{4.8\times10^{5}(6.3-10^{3})}{100^{3}}$	3		
	= -	-1.92×10^4 J			
3					
(a)	As the tube is partially submerged, there is upthrust.				
	-	ht and upthrust tant force is zer		agnitude and a	acts in opposite directions. Hence,
(b)			0.		
(5)	At equilibrium, weight of the tube and sand = upthrust				
	$Mg = \rho Ahg$				
	When further displaced and taking downwards as positive,				
	$Mg - \rho A(h+x)g = Ma$				
	ρAhg – μ	$\rho Ahg - \rho Axg =$	Ма		
	_	$-\rho Axg =$	Ма		
		a =	$-\left(\frac{\rho Ag}{M}\right)x$		
		u	$(M)^{*}$		
(c)	Since ρ , λ	A, g and M are	constants, acc	eleration is dire	ectly proportional to displacement.
	The nega	ative sign show	s that accelera	tion is in the op	pposite direction to displacement.

(d)	$\omega^2 = \frac{\rho Ag}{M}$
	$\frac{2\pi}{T} = \sqrt{\frac{\rho Ag}{M}}$
	$f = \sqrt{\frac{\rho Ag}{4\pi^2 M}}$
	$f = \sqrt{\frac{\left(1.2 \times 10^{3}\right)\left(5.5 \times 10^{-4}\right)\left(9.81\right)}{4\pi^{2}\left(120 \times 10^{-3}\right)}}$
	=1.2 Hz (2 s.f.)
(e)(i)	V V <t< th=""></t<>
(e)(ii)	Spiral inwards clockwise starting from positive maximum displacement (downwards positive).
4	
(a)(i)	A <i>polarised wave</i> is a wave whose vibrations are restricted to one plane.
(a)(ii)	Apply Malus' Law,
	$I_1 = I_0 (\cos 40^\circ)^2$
	$I_2 = I_0 (\cos 40^\circ)^2 (\cos 80^\circ)^2$ = 0.018 <i>I</i> (2 s.f.)
(b)(i)1.	Displacement of wave laterally (left and right) from the central axis of the tube represents vibrations of air molecules vertically (up and down) along the axis of the tube. The vibrations are parallel to the direction of propagation of the incident wave down the
	tube.

	Stationary wave pattern $1/4 \lambda$ 35.0 cm $1/2 \lambda$	
(b)(i)2.	Correct stationary wave pattern.	
(b)(i)3.	Correct number of nodes and location of nodes.	
(b)(ii)	$\frac{1}{2}\lambda = 35.0 \text{ cm}$	
	$\lambda = 70.0 \text{ cm}$	
	$f = \frac{340}{0.700}$	
	$f = \frac{0.12}{0.700}$	
	= 486 Hz (3 s.f.)	
(c)(i)	$d\sin\theta = n\lambda$	
	$1 \qquad \sin 90^\circ - n(540 \times 10^{-9})$	
	$\frac{1}{5.00 \times 10^5} \sin 90^\circ = n(540 \times 10^{-9})$	
	<i>n</i> = 3.70	
	= 3 (round down to nearest whole number)	
	Total number of maxima = $(3 \times 2) + 1$	
	=7	
(c)(ii)	$d\sin\theta = n\lambda$ $\frac{1}{5.00 \times 10^5} \sin\theta = 2(542 \times 10^{-9})$ $\theta = 32.820^{\circ}$ $d\sin\theta = n\lambda$ 1	
	$\frac{1}{5.00 \times 10^5} \sin \theta = 2(539 \times 10^{-9})$	
	$\theta = 32.616^{\circ}$	
	Angular separation is 0.204°	
	Since angular separation is less than 0.30°, the two wavelengths cannot be	
	distinguished at the second order.	
5		
(a)	Electric force = $q \frac{\Delta V}{d}$	
	$= 0.78 \times 10^{-6} \frac{2000}{5.0}$	
	$= 3.12 \times 10^{-4} \text{ N}$	
	Direction of electric force is rightwards towards Q.	

(b)(i)	
(5)(1)	u
	electric force
	resultant force
	weight
	Forces must be labeled clearly.
(b)(ii)	The weight of particle X has the same order of magnitude as the electric force.
(c)	Horizontally,
	$s_x = 5.0, u_x = 0, a_x = \frac{3.12 \times 10^{-4}}{4.9 \times 10^{-4}} = 6.25 \text{ m s}^{-2}$
	$\frac{4.9 \times 10^{-1}}{9.81}$
	Using $v_x^2 = u_x^2 + 2a_x s_x$,
	$v_x = 7.91 \text{ m s}^{-1}$
	Using $s_x = \frac{1}{2}a_x t^2$,
	<i>t</i> = 1.26 s
	Vertically,
	Using $v_{Y} = u + a_{y}t$
	$v_{\rm Y} = 23 + (9.81)(1.26)$
	$= 35.4 \text{ m s}^{-1}$
	Magnitude of resultant velocity = $\sqrt{7.91^2 + 35.4^2}$
	= 36.3 m s ⁻¹ (3 s.f.)
(d)	Since electric force and weight are of constant magnitudes and directions, the resultant force would also be of constant magnitude and direction.
	As the velocity has a component along the resultant force and a component perpendicular to it, the path taken by the particle would be parabolic.
(e)	$\Delta V = 2000 \text{ V}$
	Change in $EPE = q \Delta V$
	$= (-0.78 \times 10^{-6})(1000 - (-1000))$
	$= -1.56 \times 10^{-3} \text{ J}$
6	
(a)	Force per unit length acting on a straight, current-carrying conductor,
(~)	carrying unit current and placed at right angles to an external magnetic field.

(1-)(!)			
(b)(i)	$B = \left(\frac{4\pi \times 10^{-7} \times 80}{2\pi \times 0.80}\right)$		
	$\left(2\pi \times 0.80 \right)$		
	$F = Bqv \sin 90^{\circ}$		
	$(4\pi \times 10^{-7} \times 80)$ (4 0 40 ⁻¹⁹) (4 0 40 ³)		
	$= \left(\frac{4\pi \times 10^{-7} \times 80}{2\pi \times 0.80}\right) (1.6 \times 10^{-19}) (1.0 \times 10^{3})$		
	$= 3.2 \times 10^{-21} \text{ N}$		
(b)(ii)			
	0.80 m P Q		
	cable		
	direction of current		
	Force drawn perpendicularly to the tangent of the path at Q.		
(b)(iii)	At P, the ion will experience a magnetic force to the right by FLHR. This will make the		
	ion move in a circle.		
	As ion moves nearer the cable, magnetic flux density due to the cable increases ($B \alpha$		
	1/ <i>r</i>), increasing the magnetic force ($F = Bqv$). Thus, the radius of circular path becomes smaller. Eventually there will be a point where		
	the ion is moving parallel to the cable. The magnetic force will then cause the ion to turn		
	back, with the radius of the circular path becoming larger as the ion moves further away		
	from the cable.		
(c)(i)1.	The magnetic field of the magnet is not uniform and the magnet's velocity is changing.		
	The rate of change of magnetic flux linkage will not be constant.		
(c)(i)2.	The magnetic flux linkage increases when the magnet enters the coil and decreases		
	when the magnet leaves the coil.		
(c)(i)3.	The magnet's velocity increases as it falls through the coil.		
	The magnitude of the change in the magnetic flux linkage (area under the graph) is the		
(c)(ii)	same.		
	0.40 0.20 0.20 0.00 0.00 0.10 0.20 0.40 0.50 0.50 0.50 0.70		
	-0.40		
	-0.60 time / s		
	uno / 3		

(c)(i)	An atom is said to be in its ground state when the electrons in the atom occupies all the lowest energy states available.
(-)(i)	The photons are emitted when electrons transit from a higher to a lower electron energy level. Hence each energy level must be discrete.
	emitted.
(b)(ii)	Each line in the emission spectrum corresponds to a specific frequency <i>f</i> , of the photons
(b)(i)	Discrete bright coloured lines on a dark background.
	of the radiation.
(a)	A photon is a quantum (i.e. a discrete amount) of energy of electromagnetic radiation. and its energy <i>E</i> , is given by $E = hf$ where <i>h</i> is the Planck's constant and <i>f</i> the frequency
7	
	Correct shape: half-rectified wave of at least 2 cycles
	Timebase: $f = 50$ Hz, $T = 20$ ms (4 squares) Voltage gain: $V_0 = 20$ V (4 squares)
(d)(ii)	
	$= (2 \times 5.0 \times 10^{-3})(2.0 \times 10^{3})$ = 20 V
	$V_0 = I_0 R$ = (2 × 5.0 × 10 ⁻³)(2.0 × 10 ³)
	<u> </u>
	$I_{rms} = \frac{I_0}{2}$
(d)(i)	(The positive area should be roughly equal to negative area.) For a half-rectified wave,
	distance moved (greater rate of change of magnetic flux linkage)).
	The negative e.m.f. region will have a larger value of maximum e.m.f. with a shorter duration (as the magnet would have a higher velocity leaving the coil due to greater
	inside the coil as there is no rate of change magnetic flux linkage).
	There will be a region where e.m.f. is zero. (This is when the magnet is moving fully
	magnetic flux linkage)).
	height and would have the same velocity entering the coil (same rate of change of

(c)(ii)	Ionisation energy
(0)(1)	
	$E = -\frac{13.6}{\infty^2} - \left(-\frac{13.6}{1^2}\right)$
	= 13.6 eV
	$= 13.6(1.60 \times 10^{-19})$
	$= 2.176 \times 10^{-18}$
	$= 2.18 \times 10^{-18}$ J (3 s.f.)
(d)(i)	$\Delta E = \left(-\frac{2.176 \times 10^{-18}}{m^2}\right) - \left(-\frac{2.176 \times 10^{-18}}{2^2}\right)$
	$\frac{hc}{\lambda} = 2.176 \times 10^{-18} \left(\frac{1}{2^2} - \frac{1}{m^2} \right)$
	$\frac{1}{\lambda} = \frac{2.176 \times 10^{-18}}{hc} \left(\frac{1}{2^2} - \frac{1}{m^2}\right)$
	$R = \frac{2.176 \times 10^{-18}}{\left(6.63 \times 10^{-34}\right) \left(3.00 \times 10^{8}\right)}$
	$= 1.094 \times 10^{7}$
	$= 1.09 \times 10^7 \text{ m}^{-1}$ (3 s.f.)
(d)(ii)	Longest wavelength corresponds to $m = 3$
	$\frac{1}{\lambda} = 1.09 \times 10^7 \left(\frac{1}{2^2} - \frac{1}{3^2} \right)$
	$= 1.514 \times 10^{6}$
	$\lambda = \frac{1}{1.514 \times 10^6}$
	$= 6.61 \times 10^{-7}$ m (3 s.f.)
(d)(iii)	Visible (red) light
(e)(i)	Electron diffraction / (Compton scattering).
(e)(ii)	$2\pi r = 3\lambda_{\rm e}$
	$\lambda_e = \frac{h}{m_e v}$
	$2\pi r = 3\left(\frac{h}{m_{\rm e}v}\right)$
	$v = \frac{3h}{2\pi rm_{\rm e}}$
	$=\frac{3(6.63\times10^{-34})}{2\pi(4.78\times10^{-10})(9.11\times10^{-31})}$
	$= 7.27 \times 10^5 \text{ m s}^{-1} (3 \text{ s.f.})$

(e)(iii)	$\Delta x \Delta p \ge h$
	$\Delta v \ge \frac{h}{m_e \Delta x}$
	$\geq \frac{6.63 \times 10^{-34}}{\left(9.11 \times 10^{-31}\right) \left(0.0100 \times 10^{-9}\right)}$
	\geq 7.278 × 10 ⁷ m s ⁻¹
	\ge 7.28 × 10 ⁷ m s ⁻¹ (round up to 3 s.f.)