

RAFFLES INSTITUTION 2024 Year 6 H2 Mathematics Timed Practice Questions and Solutions with comments

1	Consider the second order differential equation	
	$\frac{\mathrm{d}^2 x}{\mathrm{d}^2 x} + a \frac{\mathrm{d} x}{\mathrm{d}^2 x} = b$,
	$dt^2 = dt$	
	where <i>a</i> and <i>b</i> are non-zero constants and $\frac{dx}{dt} \neq \frac{b}{a}$.	
	(a) By substituting $y = \frac{dx}{dt}$, show that the above	e second order differential equation
	can be written as $\frac{\mathrm{d}y}{\mathrm{d}t} = b - ay$.	[2]
	(b) Find y in terms of t and hence find x in terms	s of <i>t</i> . [5]
(a) [2]	Since $y = \frac{dx}{dt}$, then $\frac{dy}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2x}{dt^2}$.	Similar question: Tut 8C Qn 7(i)(a)
	$\frac{d^2x}{dt^2} + a\frac{dx}{dt} = b \text{ becomes } \frac{dy}{dt} + ay = b.$	
	Rearranging, we have $\frac{dy}{dt} = b - ay$.	
(b) [5]	$\frac{\mathrm{d}y}{\mathrm{d}t} = b - ay$	There are a few did not start off correctly and wrote:
	$1 dy_1$ since $h = h dx_1 0$	$y = \int b - ay \mathrm{d}t$
	$\frac{1}{b-ay} \frac{1}{dt} = 1, \qquad \text{since } b-ay = b-a \frac{1}{dt} \neq 0$	The more common mistakes
	Integrating with respect to <i>t</i> ,	• Not having the modulus after
	$\int \frac{1}{b - ay} \mathrm{d}y = \int 1 \mathrm{d}t$	integrating $\frac{1}{b-ay}$
	$\left -\frac{1}{a} \ln b - ay = t + c$, where $c \in \mathbb{R}$	• Not able to use the appropriate method to "drop" the modulus
	$\ln b - ay = -at - ac$	for $ b-ay $
	$ b-ay = e^{-at-ac}$	• Not writing down the constant c and d after completing the
	$b - ay = \pm e^{-ac} e^{-at}$	integration.
	$b - ay = Ae^{-at}$, where $A = \pm e^{-ac}$, $A \neq 0$	some wrote the answer as $x = Kt + Ce^{-at} + B$. Note that B
	$y = \frac{1}{a} \left(b - A e^{-at} \right)$	and C are arbitrary constants (in this case, <i>B</i> can be any real value
	Since $y = \frac{\mathrm{d}x}{\mathrm{d}t}$,	and C can be any non-zero value). However, K is not an arbitrary
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{a} \left(b - A \mathrm{e}^{-at} \right)$	constant as $K = \frac{b}{a}$. So, in this
	$x = \frac{1}{a} \left(bt + \frac{A}{a} e^{-at} \right) + B$, where $B \in \mathbb{R}$	instance, it is better to write the answer as $x = \frac{b}{a}t + Ce^{-at} + B$
	$=\frac{b}{a}t+\frac{A}{a^2}e^{-at}+B$	Similar question: Tut 8C Qn 3, 7(i)(b), 10(i)

- 2 Referred to an origin O, the position vectors of three points A, B and C are 3i 2j + 5k, i + 4j - 2k and $\alpha i + 2j + 4k$ respectively.
 - (a) Determine the value of α for which points O, A, B and C are coplanar. [2]
 - (b) Given that $\overrightarrow{OD} = \overrightarrow{OA} + \lambda \overrightarrow{OB}$, find the value of λ for which \overrightarrow{OD} is perpendicular to the y axis. [2]

	$\overrightarrow{OD} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0$ $\begin{pmatrix} 3+\lambda \\ -2+4\lambda \\ 5-2\lambda \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0 \implies \lambda = \frac{1}{2}$	
(c) [2]	$\overline{OD} = \overline{OA} + \frac{1}{2}\overline{OB} = \begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = \begin{pmatrix} 3.5 \\ 0 \\ 4 \end{pmatrix}$ Area of ΔOAD $= \frac{1}{2} \overline{OA} \times \overline{OD} $ $= \frac{1}{2} \begin{vmatrix} 3 \\ -2 \\ 5 \end{vmatrix} \times \begin{pmatrix} 3.5 \\ 0 \\ 4 \end{vmatrix}$ $= \frac{1}{2} \begin{vmatrix} -8 \\ 5.5 \\ 7 \end{vmatrix}$ $= \frac{1}{2} \sqrt{64 + 30.25 + 49}$ $= \frac{1}{4} \sqrt{573}$	This part is well done.

3	(a)	(a) Write down constants A and B such that for all values of x, $x-1 = A(2x-4) + B$.		
	(b)	By expressing $x^2 - 4x + 5$ in completed square form	n. find	
	. ,	$\int \frac{x-1}{2} dx.$ [4]		
	(c)	$\int x^2 - 4x + 5$ Hence without using a calculator show that	[·]	
	(C)	frence, without using a calculator, show that $\int_{-\infty}^{2} x-1 = \pi - 1, p$	1	
		$\int_{-2} \frac{1}{x^2 - 4x + 5} \mathrm{d}x = \frac{1}{2} + \frac{1}{2} \ln \frac{1}{q}$	$-\tan^2 q$,	
(a)	From	where p and q are exact real constants to be determine $r_{1} = 4(2r_{1} + R_{2})$	ned. [4]	
(a) [1]		$a_{1} x - 1 - A(2x - 4) + B,$	This part is well dolle.	
	Com	support coefficients of x: $2A = 1 \implies A = -\frac{2}{2}$		
	Com	npare constants: $-4A + B = -1 \implies B = 1$		
	Hen	ce $A = \frac{1}{2}, B = 1.$		
(b)		$\frac{1}{(2x-4)+1}$		
[4]	$\int \frac{1}{x^2}$	$\frac{x-1}{-4x+5}$ dx = $\int \frac{2^{(1-x)}}{x^2-4x+5}$ dx, from (a)		
		$=\frac{1}{2}\int \frac{2x-4}{dx+1}dx + \int \frac{1}{dx}dx$		
		$2 \int x^2 - 4x + 5 \int $		
		$= \frac{1}{2} \ln \left x^2 - 4x + 5 \right + \int \frac{1}{\left(x - 2 \right)^2 + 1} dx$		
		$=\frac{1}{2}\ln(x^2-4x+5)+\tan^{-1}(x-2)+c,$		
	since	$x^2 - 4x + 5 > 0$ for all real values of x.		
(c) [4]	Note	e that $ x-1 = \begin{cases} -(x-1), & \text{if } x \le 1, \\ x-1, & \text{if } x > 1. \end{cases}$	This part is not well-done. Not many are able to split the limits correctly.	
	$\int_{-2}^{2} \frac{1}{x}$	$\frac{ x-1 }{x^2-4x+5} \mathrm{d}x$	Similar question: Assignment 8B Qn 4	
	=-	$\int_{-2}^{1} \frac{x-1}{x^2-4x+5} \mathrm{d}x + \int_{1}^{2} \frac{x-1}{x^2-4x+5} \mathrm{d}x$		
	=	$\frac{1}{2} \left[\ln \left(x^2 - 4x + 5 \right) \right]_{-2}^{1} - \left[\tan^{-1} \left(x - 2 \right) \right]_{-2}^{1}$		
		$+\frac{1}{2}\left[\ln(x^{2}-4x+5)\right]_{1}^{2}+\left[\tan^{-1}(x-2)\right]_{1}^{2}$		
	=	$\frac{1}{2}\ln 2 + \frac{1}{2}\ln 17 + \frac{1}{2}\ln 1 - \frac{1}{2}\ln 2$		
		$-\tan^{-1}(-1) + \tan^{-1}(-4) + \tan^{-1}(0) - \tan^{-1}(-1)$		
	= _	$\ln 2 + \frac{1}{2}\ln 17 - 2\tan^{-1}(-1) - \tan^{-1}(4)$		
	$=\frac{1}{2}$	$\ln\frac{17}{4} + 2\tan^{-1}(1) - \tan^{-1}(4)$		
	$=\frac{\pi}{2}$	$+\frac{1}{2}\ln\frac{17}{4}-\tan^{-1}(4)$, where $p = 17$, $q = 4$.		

4	The functions f and g are defined by $f: x \mapsto \frac{2x+14}{3x-2}, x \in \mathbb{R}, x > \frac{2}{3},$			
	$g: x \mapsto \frac{\sin x}{x}, x \in \mathbb{R}, x > 0$).		
	(a) Find $f^{-1}(x)$ and state its domain.	[3]		
	(b) Explain why $f^{2024}(x) = x$ for $x > \frac{2}{2}$.	[1]		
	On the same diagram, sketch the graphs of $y = f(x)$ a	and $y = f^{2024}(x)$, giving the		
	(c) equations of any asymptotes.	[3]		
	(d) Explain why the composite function grexists.(e) Find the range of gf.	[1]		
(a) [3]	Let $y = \frac{2x + 14}{2x - 2}$.	Quite a number of students did not realise		
[9]	3x-2 $y(3x-2) = 2x+14$ $x = \frac{2}{3}$	that the graph of		
	3xy - 2y = 2x + 14	$y = \frac{2x+14}{3x-2}$ has the		
	3xy - 2x = 2y + 14	horizontal asymptote		
	$x = \frac{2y + 14}{3y - 2}$	$y = \frac{2}{3}$. Thus, not able to give the correct range of		
	$f^{-1}(x) = 2x + 14$	f (which is also the		
	$1 (x) = \frac{3x-2}{3x-2}$	function).		
	$D_{f^{-1}} = R_f = \left(\frac{2}{3}, \infty\right).$			
(b)	Since $f(x) = f^{-1}(x)$ for $x > \frac{2}{2}$, then $f^{2}(x) = x$.	Similar question:		
[1]	Hence, $f^{2024}(x) = f^{2022}(f^{2}(x))$	Example 11(b)		
	$= f^{2022}(x)$, from above			
	$=\mathrm{f}^{2020}\left(\mathrm{f}^{2}\left(x\right)\right)$			
	$= f^{2020}(x)$:			
	$= f^{2}(x) = x$			
(c)	V	Note that $(2) = (2)$		
[3]	\wedge	$D_{f^{2024}} = D_f = (\frac{\pi}{3}, \infty)$. So, we only drew the graph		
	$x = \frac{2}{2}$ $y = f(x)$	for $x > \frac{2}{3}$		
		Many also drew the		
	$y = f^{2024}(x)$	graph of f in the 3 rd		
		domain of f is given to		
		be $\left(\frac{2}{3},\infty\right)$.		
	$y = \frac{2}{3}$			
	$O > x^{3}$			

5 The curve C is defined by the parametric equations $x = t^2$ and $y = 2t + t^3$, where $-1 \le t \le 1$.

- (a) Sketch the graph of C.
 - (b) Without using a calculator, find the equation of the normal to the curve C at the point where $t = \frac{1}{2}$. [4]

[2]

(c) Find the exact area bounded by the curve *C*, the positive *y*-axis and the normal found in part (b). [4]

		[']
(a) [2]	(0,0) $(1,3)$ $(0,0)$ $(1,-3)$	Some students used the default window setting and only obtain the graph in the first quadrant. There is a need to change $t_{min} = -1$ and $t_{max} = 1$ as defined in the question. Coordinates of the end-points are to be stated on the graph.
(b) [4]	$\frac{\text{Method 1}}{x = t^2} \Rightarrow \frac{dx}{dt} = 2t, \qquad y = 2t + t^3 \Rightarrow \frac{dy}{dt} = 2 + 3t^2.$ $\therefore \frac{dy}{dx} = \frac{2 + 3t^2}{2t}$ When $t = \frac{1}{2}, x = \frac{1}{4}, y = \frac{9}{8}, \frac{dy}{dx} = \frac{2 + 3(\frac{1}{4})}{1} = \frac{11}{4}$ Gradient of normal $= -\frac{4}{11}$ Equation of normal is $y - \frac{9}{8} = -\frac{4}{11}\left(x - \frac{1}{4}\right)$ $y = -\frac{4}{11}x + \frac{1}{11} + \frac{9}{8}$ $\therefore y = -\frac{4}{11}x + \frac{107}{88}$ $\frac{\text{Method 2}}{y = 2t + t^3} \Rightarrow y^2 = 4t^2 + 4t^4 + t^6 = 4x + 4x^2 + x^3.$ Differentiate with respect x , $2y\frac{dy}{dx} = 4 + 8x + 3x^2 \Rightarrow \frac{dy}{dx} = \frac{4 + 8x + 3x^2}{2y}.$ When $t = \frac{1}{2}, x = \frac{1}{4}, y = \frac{9}{8}, \frac{dy}{dx} = \frac{2 + 8(\frac{1}{4}) + 3(\frac{1}{4})^2}{2(\frac{9}{8})} = \frac{11}{4}.$	This part is well done.

- The point A has coordinates (1.5, 0, 2), and the planes π_1 and π_2 have equations x + y = 4 and 3x + 2y 5z = 7 respectively.
 - (a) π_1 and π_2 intersect in a line *l*. Find a vector equation of *l*. [2]
 - (b) Find the coordinates of the foot of perpendicular from A to π_1 . [4]
 - (c) The point *B* is the mirror image of *A* in π_1 . Find the coordinates of *B* and determine if it lies on π_2 . [3]

(d) Find the cartesian equation of the plane π_3 , which is the reflection of π_2 in π_1 .

		[3]
(a) [2]	x + y = 4 (1) 3x + 2y - 5z = 7 (2) Using GC, $l : \mathbf{r} = \begin{pmatrix} -1 \\ 5 \\ 0 \end{pmatrix} + t \begin{pmatrix} 5 \\ -5 \\ 1 \end{pmatrix}, t \in \mathbb{R}$	Many are able to use the GC app (PlySmlt2) to obtain the correct answer.
(b) [4]	$\overline{OA} = \begin{pmatrix} 1.5\\0\\2 \end{pmatrix}, \pi_1 : \mathbf{r} \cdot \begin{pmatrix} 1\\1\\0 \end{pmatrix} = 4$ Let <i>F</i> be the foot of perpendicular from <i>A</i> to π_1 . $l_{AF} : \mathbf{r} = \begin{pmatrix} 1.5\\0\\2 \end{pmatrix} + s \begin{pmatrix} 1\\1\\0 \end{pmatrix}, s \in \mathbb{R}$ $l_{AF} \text{ intersects } \pi_1 \text{ at } F.$ $\begin{pmatrix} 1.5+s\\s\\2 \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\0 \end{pmatrix} = 4$ 1.5+s+s=4 2s = 2.5 $s = \frac{5}{4}$ $\therefore \text{ Coordinates of } F \text{ is } (2.75, 1.25, 2) \text{ or }$ $\begin{pmatrix} \frac{11}{4}, \frac{5}{4}, 2 \end{pmatrix}.$	A few students tried to imitate the method for finding the foot of perpendicular from a point to a line onto this question, but was unsuccessful. Note that $l_{AF} : \mathbf{r} = \begin{pmatrix} 1.5 \\ 0 \\ 2 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ represents the equation of the line AF . So, $\overrightarrow{AF} \neq \begin{pmatrix} 1.5 \\ 0 \\ 2 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$!! The vector \mathbf{r} is position vector of a point on the line AF . In other words, since F lies on l_{AF} , we can write $\overrightarrow{OF} = \begin{pmatrix} 1.5 \\ 0 \\ 2 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. Similar question: Tut 4D Qn 7(i), Assignment 4D Qn 1(ii)

6

Nathan is saving for a car that he intends to buy in the future, and he would like **(a)** to save a minimum of \$130 000. He saves regularly in an account which offers no interest. He makes an initial deposit of \$A on 31 January 2022. Each subsequent month, he deposits \$150 more than he deposited in the previous month. His final deposit is made on 30 June 2024. Find, to the nearest dollar, the smallest value of A so that he can save at least \$130 000. [2]

7

Nathan comes across a savings plan offered by a bank. Interest is added to the account at the end of each month at a fixed rate of 1.25% of the amount in the account at the beginning of that month under this savings plan.

- Nathan opened an account under this savings plan. He decides to deposit X at **(b)** the beginning of the first month and then a further X at the beginning of the second and each subsequent month. He also decides that he will not draw any money out of the account, but just leave the money in the account for the interest to build up.
 - (i) Write down the amount in the bank account, including the interest, at the end of 1 month. [1]
 - (ii) Show that, at the end of *n* months, when the interest for the last month has been added, he will have a total of $mX(1.0125^n - 1)$ in his bank account, where *m* is an integer to be determined. [3]
 - (iii) After how many complete months will he have, for the first time, at least \$13*X* in his bank account? [2]
- Nathan decides that, to assist him in his everyday expenses, he will withdraw the (c) interest as soon as it has been added. With this decision, he deposits Y at the beginning of each month. Show that, at the end of N months, he will have received a total of kYN(N+1) in interest, where k is an exact constant to be

	determined.					
(a)	We have an AP with the following:					
[2]	First term = A					
	Common	difference $= 150$				
	Number	of terms (number of m	anonths) = 30			
	So we ha	ve				
	30	(20, 1)150 > 120000				
	$\frac{1}{2} L^{2A+1}$	$(30-1)130 \leq 130000$				
		1[13000	0			
		$A \ge \frac{1}{2} \left \frac{15000}{15} \right $	$(-(29)(150)) \approx 2158.33$			
	Hence sn	nallest $A = 2159$ (near	est dollar).			
(b)(i)	1.0125X.	·				
[1]						
(ii)	Month					
3	1	X	1.0125X			
	2	1.0125X + X	(1.0125X + X)(1.0125)			
			$=1.0125X+1.0125^{2}X$			
	3	$X + 1.0125X + 1.0125^2X$	$(X+1.0125X+1.0125^{2}X)(1.0125)$			
	n	$X + 1.0125X + 1.0125^2X$				
		$++1.0125^{n-1}X$	$+\ldots+1.0125^{n-1}X)(1.0125)$			
			$=1.0125X+1.0125^{2}X$			
			$+1.0125^{3}X + \ldots + 1.0125^{n}X$			

	Hence, total amount in the account	
	$= 1.0125X + 1.0125^{2}X + 1.0125^{3}X + \ldots + 1.0125^{n}X$	
	$= 1.0125X (1 + 1.0125 + 1.0125^{2} + \ldots + 1.0125^{n-1})$	
	$=\frac{1.0125X(1.0125^n-1)}{1.0125^n-1}$	
	1.0125 - 1	
	$=\frac{1.0125}{0.0125}X(1.0125^n-1)$	
	$=81X(1.0125^{n}-1)$	
	$= mX(1.0125^{n} - 1)$, where $m = 81$ (shown).	
(iii)	To have at least $\$13X$ in the account, we need	
[2]		
	$81X(1.0125^n - 1) \ge 13X$	
	$\Rightarrow 1.0125^n \ge \frac{13}{81} + 1$	
	$\Rightarrow n \ge \frac{\ln\left(\frac{94}{81}\right)}{\ln\left(1.0125\right)} \approx 11.9819$	
	Alternatively	
	$81X(1.0125^{n} - 1) \ge 13X \Longrightarrow 81(1.0125^{n} - 1) - 13 \ge 0$	
	Let $f(n) = 81(1.0125^n - 1) - 13.$	
	Using GC,	
	$f(11) \approx -1.1396 < 0$	
	$f(12) \approx 0.021116 > 0$	
	Hence after 12 complete months, he will have at least $$13X$ in his account for the first time.	

(c) [3]	Month	Amt (Beginning)	Amt (End)	Interest	
[9]	1	Y	Y + 0.0125Y	0.0125Y	
	2	2 <i>Y</i>	2Y + 0.0125(2Y)	0.0125Y + 0.0125(2Y)	
	3	3 <i>Y</i>	3Y + 0.0125(3Y)	0.0125Y + 0.0125(2Y)	
				+0.0125(3Y)	
	Ν	NY	NY + 0.0125(NY)	0.0125Y + 0.0125(2Y)	
				+0.0125(3Y)+	
				+0.0125(NY)	
	Hence t	total interest	received		
	= 0.012	25Y + 0.012	25(2Y) + 0.0125(3)	(3Y) + + 0.0125(NY)	
	= 0.012	25Y[1+2+	3 + + N]	, , , ,	
	= 0.012	$25Y\left[\frac{N(N)}{2}\right]$	+1)		
	= 0.00	625 <i>YN</i> (N+	+1) or $\frac{1}{160}YN($	N+1)	
	= kYN	(N+1), wh	here $k = \frac{1}{160}$ or 0.0	00625 (Shown).	

From past data, it is known that the mean time taken by students at a school to complete a H2 Mathematics A-level examination paper was 170 minutes. In June 2024, Ms Tan believes that her students are not ready for the examination and will take more than 170 minutes to complete the paper. She gives the same examination paper to 50 students, assuming that these students have not seen the paper before. She notes the time taken by each student and carries out a test.

- (a) State null and alternative hypotheses for the teacher's belief, defining any parameters you use. [2]
- (b) Given that Ms Tan's students took an average of 172.1 minutes and the sample variance is 53.8 minutes², test, at the 5% significance level, whether the teacher's belief is supported. [4]

(a)	Let μ (min) denote the population mean time taken	Most students used a
[2]	by the students to complete the H2 Mathematics	sensible symbol (μ) for the
	examination paper.	population mean time
	$H_0: \mu = 170, H_1: \mu > 170$	taken.
		Almost all are able to state the hypotheses correctly, but not all defined the parameter μ . It is necessary to include the word population when defining μ . Similar question:
		Tut S5 Qn 5(i) & 6(ii)
(b) [4]	Let X min be the time taken by a randomly selected student. Perform a 1-tail test at 5% significance level. Unbiased estimate of population variance $= \frac{50}{49}(53.8) \approx 54.898$ Under H ₀ , since $n = 50$ is large, $\overline{X} \sim N\left(170, \frac{54.898}{50}\right)$ or $\overline{X} \sim N\left(170, \frac{53.8}{49}\right)$ approximately by Central Limit Theorem. Using a z-test, p-value $= P(\overline{X} \ge 172.1) = 0.0225$ (to 3s.f.)	The variance 53.8 given in the question is the sample variance. Very few students used this sample variance to find the unbiased estimate of the population variance. Similar question: Tut S5 Qn 8(iii) & (iv)
	Since <i>p</i> -value = $0.0225 < 0.05$, we reject H ₀ and conclude there is sufficient evidence, at the 5% significance level, that the teacher's students take more than 170 minutes to complete the paper.	

8

9 The letters from the word PERIMETER are arranged in a row.

- (a) Find the number of different arrangements of the nine letters.
- (b) Find the number of different arrangements if there are at least 6 letters between the two Rs. [3]

[1]

One of the Es is removed and the remaining letters are arranged randomly in a row.(c)Find the probability that no adjacent letters are the same.[4]

(a) [1]	Number of arrangements $=\frac{9!}{3!2!}=30240$	This part is well done.
(b) [3]	Case 1: RR Case 2: RR Case 3: _RR	
	In each of the case, there are $\frac{7!}{3!}$ ways to arrange.	
	So total number of ways $=\frac{7!}{3!} \times 3 = 2520.$	
(c) [4]	Total number of arrangements $=\frac{8!}{2!2!}=10080$	This part is not well done.
	Method 1 Case 1: Es together, Rs not together Number of ways to slot the 2 Rs into 6 spaces = ${}^{6}C_{2}$ Number of ways = ${}^{6}C_{2} \times 5! = 1800$ Case 2: Rs together, Es not together Number of ways = ${}^{6}C_{2} \times 5! = 1800$ Case 3: Rs together, Es together = $6! = 720$ Required probability = $\frac{10080 - 1800 - 1800 - 720}{10080} = \frac{5760}{10080} = \frac{4}{7}$ Method 2 Case 1: Es together Number of ways = $\frac{7!}{2!} = 2520$ Case 2: Rs together Number of ways = $\frac{7!}{2!} = 2520$	
	Case 3: Es together and Rs together Number of ways $= 6! = 720$	
	Required probability = $\frac{10080 - (2520 + 2520 - 720)}{10080} = \frac{5760}{10080} = \frac{4}{7}$	

2024 Yr 6 H2 Math Timed Practice Solution with Comments

10 A biased die in the form of a tetrahedron has its four faces labelled 1 to 4, with one number printed on each face. The die is tossed and X is the random variable representing the number on the face on which the die lands. The probability distribution of X is shown in the table below.

x	1	2	3	4
$\mathbf{P}(X=x)$	р	q	q	р

[1]

[4]

(a) State the numerical value of E(X).

(b) Given that Var(X) = 1.65, find the values of p and q.

A game is played by a player tossing this die once. If the die lands on the face with the number 4 printed on it, the player wins, otherwise the player loses. The random variable *Y* denotes the number of wins out of 50 games the player plays.

(c) State two assumptions needed for Y to be well modelled by a binomial distribution. [2]

Assume that *Y* follows a binomial distribution.

(d) Find the probability the player wins more than the expected number of games won. [3]

		L- J
(a) [1]	$E(X) = \frac{2+3}{2} = 2.5$, by symmetry.	This part is well done
	Alternatively,	
	$\sum P(X=x) = 1 \Longrightarrow 2p + 2q = 1 \Longrightarrow p + q = \frac{1}{2}.$	
	$E(X) = \sum xP(X = x) = p + 2q + 3q + 4p = 5(p+q) = 2.5.$	
(b) [4]	E(X) = p + 2q + 3q + 4p = 2.5	This part is well done
ויין	$\Rightarrow p+q = \frac{2.5}{5} = 0.5 - \dots (1)$	
	Method 1	
	$\operatorname{Var}(X) = \operatorname{E}(X^{2}) - \left[\operatorname{E}(X)\right]^{2}$	
	$= (p + 4q + 9q + 16p) - (2.5)^{2} = 1.65$ $\Rightarrow 17p + 13q = 7.9 (2)$	
	Solving (1) and (2), we have $p = 0.35$, $q = 0.15$.	
	Method 2	
	$\operatorname{Var}(X) = \operatorname{E}\left(\left(X - \operatorname{E}(X)\right)^{2}\right)$	
	$= \mathrm{E}\left(\left(X - 2.5\right)^{2}\right)$	
	$= (1-2.5)^{2} p + (2-2.5)^{2} q + (3-2.5)^{2} q + (4-2.5)^{2} p$	
	=4.5p+0.5q=1.65(2)	
	With $p + q = 0.5$, we get $p = 0.35$, $q = 0.15$	

(c)	The event that the player wins in a game is independent of	Common mistakes	
[2]	the event the player wins in another game.	seen:	
		• The probability that	
	The probability of a player winning in a game remains as a	player wins in a game	
	constant of $p = 0.35$.	is independent of the	
	-	probability that	
		player wins in another	
		game.	
		We do not say	
		probability being	
		independent of each	
		other.	
		• The game has 2	
		outcomes – either win	
		or lose	
		This is not an	
		assumption as this is	
		obviously implied in	
		the question.	
		• There is a fixed	
		number of games	
		This is not an	
		assumption as this is	
		obviously implied in	
		the question.	
		Similar question:	
		Chan S2B Example 5(i)	
		& Example 6	
(d)	We have $V = B(50, 0.35)$ and $E(V) = 50(0.35) = 17.5$	This part is well done	
[3]	we have $T \sim B(50, 0.55)$ and $E(T) = 50(0.55) = 17.5$.		
	$P(Y > 17.5) = P(Y \ge 18)$		
	$= 1 - P(Y \le 17)$		
	= 0.49402 (5 sf)		
	= 0.494 (3 sf).		

11 In this question you should state clearly the values of the parameters of any normal distributions you use.

A fruit seller sells two kinds of fruits, namely durians and soursops.

The masses, in kg, of a durian and a soursop are modelled as having normal distributions with means and standard deviations as shown in the following table.

			Mean mass (kg)	Stand	Standard deviation (kg)	
		Durian	2.2		0.4	
		Soursop	1.3		0.2	
	(a) Find t	he mass that	is exceeded by 95%	of the	soursops.	[1]
	(b) Three	durians are	randomly chosen. Fin	d the p	robability that two of	these durians
	each 1	has mass le	ss than 2.3kg and o	one of	the durians has mag	ss more than
	2.3Kg.	ha nrahahili	ty that the mage of a m	andom	ly abagan durian diffe	[3]
	the ma	ass of a rand	omly chosen sourson	by me	bre than 300 grams	
	(d) Write down an assumption that you have used in part (c) [1]					[5]
	(e) Durians are sold at \$20 per kg. Find the probability that 5 randomly chosen					
	durian	is cost at lea	st \$225.	1	•	[3]
(a)	Let S be the	e mass of a s	oursop in kg.		This part is well do	ne.
[1]	Then $S \sim N$	$(1.3, 0.2^2)$.				
	Want to find	m such that	t P(S > m) = 0.95		Similar question:	
			(2) = 0.05		Tut S3 Qn 7(i) & 10 (i)	
	From GC, P	(3 > 0.9/10)	(3) = 0.95.			
	Therefore th	e required n	nass is 0.971 kg (3 s.f	f.).		
(b)	Let D be th	e mass of a	durian in kg.		Many students did r	iot "multiply
[ວ]	Then $D \sim N$	$(2.2, 0.4^2).$			Dy 3. Leaving the answer	25
	Required pro	obability =			$[\mathbf{D}(\mathbf{D} + 2, 2)]^2 \mathbf{D}(\mathbf{D})$	as 2.5)
	3[P(D < 2.3)]	$\mathbf{S})\right]^2 \mathbf{P}(D > 2.$	(5) = 0.244 (3 s.f.)		$\left[P(D < 2.3) \right] P(D > 2.3)$	2.5) means
	-	-			the first 2 durians ha	as mass less
					than 2.3kg and the 3	$\beta^{\rm re}$ durian has
					As the durian that h	ag.
					than 2.5kg can be a	ny of the 3
					durians, so there is a	a need to
					3	! 、
					multiply by 3 (or $\frac{1}{2}$	-) !
					Similar question:	
					Tut S3 Qn 7(iv)	
(c)	$D-2S \sim N$	$(-0.4, 0.4^2 +$	$4(0.2)^2$)		Most are able to get	the
[3]	$D-2S \sim N$	(-0.4, 0.32)			distribution of $D-1$	2S correctly,
	P(D-2S)	03)			but not many are ab	le to deal
		> 0.5)	Ň		with $ D-2S > 0.5$	
	= P(D-2S)	> 0.3) + P(1)	D - 2S < -0.3)		Cincilar anasticas	
	= 0.678(3 s.	f.)			Similar question: Tut S3 On 5 & 0 C	han S3
					Example 7(iii). Exa	mple 10(ii)
(d)	The mass of	a durian is	independent of the ma	ass of	In order to use the r	esult
[1]	a soursop.	0 -	1		$\operatorname{Var}(X \pm Y) = \operatorname{Var}(X)$	$(X) + \operatorname{Var}(Y),$
	· ·				there is a need for the	ne random
					variables X and Y to	be

	1 1 0 1 1 0
Si Tu	Chap S3 Sect 4.2. Similar question: Tut S3 Qn 7(iii) & Assignment
(e) [3] Let $T = 20(D_1 + D_2 + D_3 + D_4 + D_5)$. Then, $E(T) = 20(5)(2.2) = 220$ $Var(T) = 20^2(5)(0.4^2) = 320$ Then, $T \sim N(220, 320)$. P(T > 225) = 0.390 (3 s.f.) Alternatively, If 5 randomly chosen durians cost at least \$225, they will be at least 11.25kg. Let $Y = D_1 + D_2 + D_3 + D_4 + D_5$. Then $Y \sim N(5 \times 2.2, 5 \times 0.4^2)$, i.e. $Y \sim N(11, 0.8)$ P(Y > 11.25) = 0.390 (3 s.f.)	t is important to write down the distribution of the random variable, not just merely stating he mean and variance of the andom variable i.e. stating the values of $E(T)$ and $Var(T)$ without writing $T \sim N(220, 320)$) Similar question: Fut S3 Qn 9, Chap S3 Example 8(iii), 10(iii)