

2022 Year 6

H3 9820 Test 2

Time allocated: 1 hour 50 minutes

Total Marks: 60

Instructions: Write your name and CT group on all the work you hand in. Answer **all** questions.

1 (a) Expand and simplify
$$(a-b)(a^n + a^{n-1}b + a^{n-2}b^2 + ... + ab^{n-1} + b^n)$$
. [2]

- (b) The prime number 3 has the property that it is one less than a perfect square. Determine all prime numbers with this property, justifying your answer. [2]
- (c) Find all prime numbers that are one more than a perfect cube, justifying your answer. [3]
- (d) Is $3^{2021} 2^{2021}$ a prime number? Explain your reasoning carefully. [2]
- (e) Is there a positive integer k for which $k^3 + 2k^2 + 2k + 1$ is a perfect cube? Explain your reasoning carefully. [3]

2 (a) Suppose that *a*, *b* and *c* are positive real numbers such that the polynomial $f(x) = x^3 - 3ax^2 + 3bx - c$ has three positive real roots α , β and γ .

(i)	Express a hand a in terms of a B and u	[3]
(1)	Express a, b and c in terms of α , b and γ .	[3]

- (ii) Show that $\sqrt{b} \ge \sqrt[3]{c}$. [2]
- (iii) Use the graph of y = f(x) to explain why the polynomial f'(x) has 2 positive roots. [2]
- (iv) Hence by considering f'(x), show that $a \ge \sqrt{b}$. [2]
- (b) Let A, B and C be the angles of a triangle.

(i) Show that
$$\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} = 1.$$
 [3]

(ii) Hence, using the results established in (a) and (b)(i), show that

$$\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \ge \sqrt{3}$$
 and $\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2} \le \frac{\sqrt{3}}{9}$. [3]

- A sequence $x_1, x_2, ...$ of real numbers is defined by $x_{n+1} = x_n^2 2$ for $n \ge 1$ and $x_1 = a$. (a) Show that if a > 2 then $x_n \ge 2 + 4^{n-1}(a-2)$. [5]
 - **(b)** Show also that $x_n \to \infty$ as $n \to \infty$ if and only if |a| > 2. [5]

4 Throughout this question, no marks will be awarded for any use of the exponential or the logarithmic function.

For positive real numbers x, define $F(x) = \int_{1}^{x} \frac{1}{t} dt$.

- (a) Show that F is a strictly increasing function. [1]
- (b) Show in any order, that for all positive real numbers a, b,

(i)
$$F(ab) = F(a) + F(b)$$
,

(ii)
$$F\left(\frac{a}{b}\right) = F(a) - F(b)$$
. [4]

- (c) If there exists a real number L such that $\lim_{x \to \infty} F(x) = L$, state $\lim_{x \to \infty} F(2x)$. Hence deduce that $\lim_{x \to \infty} F(x) = +\infty$. [3]
- (d) Show that $F\left(\frac{1}{x}\right) = -F(x)$ for all positive real numbers x and hence find $\lim_{x\to 0^+} F(x)$, explaining your reasoning clearly. [2]
- (e) Show also that F(2) < 1 < F(3). [3]

5 Let $S = \{1, 2, 3, ..., 2n-1\}$. Remove at least n-1 numbers from S using the following rules:

- If the number $s \in S$ is removed and $2s \in S$, then 2s must be removed,
- If the numbers $s, t \in S$ are removed and $s + t \in S$, then s + t must be removed.

After all the possible numbers are removed from *S*, let *T* denote the sum of the remaining numbers.

- (a) Find the smallest possible value of T. [3]
- (b) Find the largest possible value of T. [7]

[END OF TEST]

3

1	$(a-b)(a^n + a^{n-1}b + a^{n-2}b^2 + + ab^{n-1} + b^n)$
(a) [2]	$=a^{n+1}-a^{n}b+a^{n}b-a^{n-1}b^{2}+a^{n-1}b^{2}-\ldots-ab^{n}+ab^{n}-b^{n+1}$
	$=a^{n+1}-b^{n+1}$
(b)	Since $(n+1)(n-1) = n^2 - 1 = p$, we must have $n-1 = 1$ since $n-1 < n+1$. This means that
[2]	$n = 2$ and the only prime with this property is $2^2 - 1 = 3$.
(c)	We want $n^3 + 1 = (n+1)(n^2 - n + 1) = p$ and therefore $n+1 = 1$ or $n^2 - n + 1 = 1$. In the first
[3]	case we must have $n = 0$ which doesn't lead to a prime, and in the second we have either n
	= 0 or $n = 1$. For $n = 1$ we get $1^3 + 1 = 2$, a prime as desired.
(d)	We have
	$3^{2021} - 2^{2021} = \left(3^{43}\right)^{47} - \left(2^{43}\right)^{47}$
	$= \left(3^{43} - 2^{43}\right) \left(\left(3^{43}\right)^{46} + \left(3^{43}\right)^{45} \left(2^{43}\right) + \dots + \left(3^{43}\right) \left(2^{43}\right)^{45} + \left(2^{43}\right)^{46} \right) \right)$
	and since each term is greater than 1, $3^{2021} - 2^{2021}$ is not a prime number.
(e)	Note that for positive k,
	$k^{3} < k^{3} + 2k^{2} + 2k + 1 < k^{3} + 3k^{2} + 3k + 1$
	and since the expression lies between 2 consecutive cubes, it cannot be a perfect cube.

RI 2022

Since the polynomial f(x) has 3 roots, the polynomial f'(x) which is quadratic, has 2 roots. In addition, the roots of the polynomial f'(x) are the x-coordinates of the stationary points of the polynomial f(x). As the stationary points occur between the roots (α , β and γ) of the polynomial f(x) (as seen in (i)) or are one of the roots themselves (as seen in (ii), (iii) and (iv)) and since these roots α , β and γ are positive, the roots of the polynomial f'(x) which are the x-coordinates of the stationary points of the polynomial f(x) are positive. Hence the polynomial f'(x) has 2 positive roots. $f'(x) = 3x^2 - 6ax + 3b$ **(a)** (iv) Let the roots of polynomial f'(x) be p and q. [2] Then p+q=2a and pq=b. Since *p* and *q* are positive, by AM-GM inequality, $a = \frac{p+q}{2} \ge \sqrt{pq} = \sqrt{b} \; .$ Alternative $f'(x) = 3x^2 - 6ax + 3b = 3(x^2 - 2ax + b)$ Since the roots of polynomial f'(x) are real, Discriminant = $4a^2 - 4b \ge 0 \Longrightarrow a \ge \sqrt{b}$. Since A, B and C be the angles of a triangle, **(b)** $A + B + C = \pi$ (i) $\frac{A+B+C}{2} = \frac{\pi}{2}$ $\tan\left(\frac{A}{2} + \frac{B}{2}\right) = \tan\left(\frac{\pi}{2} - \frac{C}{2}\right)$ $\frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2}\tan\frac{B}{2}} = \cot\frac{C}{2}$ $\tan\frac{A}{2}\tan\frac{C}{2} + \tan\frac{B}{2}\tan\frac{C}{2} = 1 - \tan\frac{A}{2}\tan\frac{B}{2}$ $\tan\frac{A}{2}\tan\frac{B}{2} + \tan\frac{B}{2}\tan\frac{C}{2} + \tan\frac{C}{2}\tan\frac{A}{2} = 1$ Let $\alpha = \tan \frac{A}{2}$, $\beta = \tan \frac{B}{2}$ and $\gamma = \tan \frac{C}{2}$. **(b)** As A, B and C be the angles of a triangle, $\frac{A}{2}$, $\frac{B}{2}$ and $\frac{C}{2}$ are acute angles and hence (ii) $\alpha = \tan \frac{A}{2}, \beta = \tan \frac{B}{2}$ and $\gamma = \tan \frac{C}{2}$ are positive.

$$a \ge \sqrt{b}$$

$$\frac{\alpha + \beta + \gamma}{3} \ge \sqrt{\frac{\alpha\beta + \beta\gamma + \gamma\alpha}{3}}$$
From (a)(iv),
$$\frac{\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2}}{3} \ge \sqrt{\frac{\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{C}{2} \tan \frac{A}{2}}{3}} = \frac{1}{\sqrt{3}}$$

$$\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \ge \sqrt{3}$$
From (a)(ii), $\sqrt{b} \ge \sqrt[3]{c}$

$$\sqrt{\frac{\alpha\beta + \beta\gamma + \gamma\alpha}{3}} \ge \sqrt[3]{\alpha\beta\gamma}$$

$$\sqrt{\frac{\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2}}{3}} \ge \sqrt[3]{\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}}$$

$$\frac{1}{\sqrt{3}} \ge \sqrt[3]{\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}}$$

$$\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2} \le \left(\frac{1}{\sqrt{3}}\right)^3 = \frac{\sqrt{3}}{9}$$

3
(a) Let
$$P_n$$
 be the statement $x_n \ge 2 + 4^{n-1}(a-2)$ for $a > 2$.
Base case P_1 :
When $n = 1$, $2 + 4^{n-1}(a-2) = 2 + a - 2 = a = x_1$. So P_1 is true.
WTS P_k is true $\Rightarrow P_{k+1}$ is true.
Suppose $x_k \ge 2 + 4^{k-1}(a-2)$ for some $k \in \mathbb{Z}^+$ (and $x_k > 0$ as $a > 2$)
Then
 $x_{k+1} = x_k^2 - 2 \ge [2 + 4^{k-1}(a-2)]^2 - 2$
 $= 4 + 2 \times 2 \times 4^{k-1}(a-2) + 4^{2k-2}(a-2)^2 - 2$
 $= 2 + 4^k(a-2) + 4^{2k-2}(a-2)^2$
 $> 2 + 4^k(a-2)$
Hence P_{k+1} is true.
Thus by induction $x_n \ge 2 + 4^{n-1}(a-2)$ for positive integer n .

(b) If $|x_k| \le 2$, then $0 \le |x_k|^2 \le 4$, so $-2 \le |x_k|^2 - 2 \le 2$, that is $-2 \le x_{k+1} \le 2$. If $|a| \le 2$, $|x_1| \le 2$ and thus by induction $-2 \le x_n \le 2$, that is $x_n \not \to \infty$ For the case where |a| > 2: Regardless of whether *a* is positive or negative, $a^2 - 2 = |a|^2 - 2$, hence it suffices to consider a > 2 for the behavior of all terms after x_1 . Therefore, from part (i), we know $x_n \ge 2 + 4^{n-1} (|a| - 2)$ for $n \ge 2$, and thus $x_n \to \infty$ as $n \to \infty$; Hence we have shown $x_n \to \infty$ as $n \to \infty$ if and only if |a| > 2.

RI 2022

5	Remove 1 from S . Then 2 is removed. (by rule (I))
(a)	1+2=3, 1+3=4,, 1+(2n-2)=2n-1 are removed. (by rule (II))
[3]	Since no remaining number in S, the smallest sum $= 0$.
(b) [7]	Let R be the sum of the removed numbers. The problem is equivalent to finding the minimum value of R
1,1	Let $r < r_2 < r_2 < \dots < r_n \in [1, 2n-1]$ be the removed numbers.
	By assumption $n > n-1$
	By assumption, $p \ge n - 1$ To evold situation in part (a) $n \ge 1$ then $n \ge n \ge 2n$ otherwise $n \ge n \le 2n - 1$ should be
	To avoid situation in part (a), $r_1 > 1$, then $r_1 + r_p \ge 2n$, otherwise $r_1 + r_p \ge 2n - 1$ should be
	removed by rule (II), then $r_p < r_1 + r_p$. This contradicts the assumption that r_p is the
	greatest removed number as above.
	Next $r_1 + r_{p-1} \ge r_p$, otherwise $r_1 + r_{p-1}$ should be removed by rule (II) which implies that
	$r_{p-1} < r_1 + r_{p-1} < r_p$ and it is impossible. Thus $r_1 + r_{p-1} \ge r_p$. Since $r_2 + r_{p-1} > r_1 + r_{p-1} \ge r_p$,
	this implies that $r_2 + r_{p-1} \ge 2n$, otherwise $r_2 + r_{p-1}$ should be removed, but it is greater than
	r_p which contradicts the assumption that r_p is the greatest removed number as above.
	Using same argument as above, we deduce that $r_i + r_{p+1-i} \ge 2n$, for all $1 \le i \le \frac{p+1}{2}$. It
	follows that $2R = (r_1 + r_p) + (r_2 + r_{p-1}) + \dots + (r_p + r_1) \ge p \cdot 2n \ge (n-1) \cdot 2n$ or
	$R = \sum_{i=1}^{p} r_i \ge n(n-1) .$
	The equality occurs if and only $r_i + r_{p+1-i} = 2n$ for all $1 \le i \le \frac{p+1}{2}$.
	Using the above condition of $r_2 + r_{p-1} = 2n$, $2n = r_2 + r_{p-1} > r_1 + r_{p-1} \ge r_p$. This implies that
	$r_1 + r_{p-1} = r_p$ since r_p is the greatest removed number.
	$r_p = 2r_1 + r_{p-2} = = pr_1$ which implies $2n = r_1 + r_p = (1+p)r_1 \ge nr_1$ since $p \ge n-1$
	(assumption as above). Hence $r_1 \leq 2$.
	Combining $r_1 > 1$ and $r_1 \le 2$ obtains $r_1 = 2$ and $p = n - 1$. By rule (II), $r_i = 2i$ for
	$1 \le i \le n-1$
	In conclusion, the removed numbers must be 2, 4,, $2n-2$ and the maximal sum of the remaining numbers is $1+3++2n-1=n^2$.