2023 H2 MATH (9758/02) JC 2 PRELIMINARY EXAMINATION – SUGGESTED SOLUTIONS

Qn	Solution
1	Vectors
(a)	$\overrightarrow{BP} = \overrightarrow{OP} - \overrightarrow{OB} \qquad \qquad \overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA}$
	$=(3\mathbf{a}-2\mathbf{b})-\mathbf{b}$ $=(3\mathbf{a}-2\mathbf{b})-\mathbf{a}$
	$= (3\mathbf{a} - 2\mathbf{b})^{*} \mathbf{b}^{*}$ and $= (3\mathbf{a} - 2\mathbf{b})^{*} \mathbf{a}^{*}$ $= 2\mathbf{a} - 2\mathbf{b}$
	$=3(\mathbf{a}-\mathbf{b}) = 2(\mathbf{a}-\mathbf{b})$
	Since $\overrightarrow{BP} = \frac{3}{2} \overrightarrow{AP}$, points <i>A</i> , <i>B</i> and <i>P</i> are collinear. (Shown)
	BP: AP = 3:2
(b)	$l_{BP}: \mathbf{r} = \mathbf{b} + \lambda (\mathbf{a} - \mathbf{b}), \ \lambda \in \mathbb{R}$
	Since <i>N</i> lies on line <i>BP</i> , $\overrightarrow{ON} = \mathbf{b} + \lambda (\mathbf{a} - \mathbf{b})$ for some $\lambda \in \mathbb{R}$.
	Since \overrightarrow{ON} is perpendicular to l_{BP} , \overrightarrow{ON} is perpendicular to $(\mathbf{a} - \mathbf{b})$.
	$\left[\mathbf{b} + \lambda (\mathbf{a} - \mathbf{b})\right] \cdot (\mathbf{a} - \mathbf{b}) = 0$
	$\begin{bmatrix} (1-\lambda)\mathbf{b} + \lambda\mathbf{a} \end{bmatrix} \cdot (\mathbf{a} - \mathbf{b}) = 0$
	$(1-\lambda)(\mathbf{b}\cdot\mathbf{a})-(1-\lambda) \mathbf{b} ^2+\lambda \mathbf{a} ^2-\lambda(\mathbf{a}\cdot\mathbf{b})=0$
	Given that $ \mathbf{b} = 1$, $ \mathbf{a} = \frac{4}{3}$, $\mathbf{a} \cdot \mathbf{b} = \left(\frac{4}{3}\right)(1)\cos\frac{\pi}{3} = \frac{2}{3}$,
	$(1-\lambda)\left(\frac{2}{3}\right) - (1-\lambda)(1)^2 + \lambda\left(\frac{4}{3}\right)^2 - \lambda\left(\frac{2}{3}\right) = 0$
	$\left(1-\lambda\right)\left(-\frac{1}{3}\right)+\frac{16}{9}\lambda-\frac{2}{3}\lambda=0$
	$-\frac{1}{3} + \frac{1}{3}\lambda + \frac{10}{9}\lambda = 0$
	$\frac{13}{9}\lambda = \frac{1}{3}$
	$\lambda = \frac{3}{13}$
	$\overrightarrow{BN} = \overrightarrow{ON} - \overrightarrow{OB}$
	$=\mathbf{b}+\frac{3}{13}(\mathbf{a}-\mathbf{b})-\mathbf{b}$
	$=\frac{3}{13}\overrightarrow{BA}$
	Therefore, $\frac{BN}{BA} = \frac{3}{13}$.

Alternative Method
$\left \overrightarrow{BN} \right = \left \frac{\overrightarrow{BO} \cdot \overrightarrow{BA}}{\left \overrightarrow{BA} \right } \right $
$= \frac{\left \frac{-\mathbf{b} \cdot (\mathbf{b} - \mathbf{a})}{\left \overrightarrow{BA}\right }\right }$
$-\mathbf{b} \cdot (\mathbf{b} - \mathbf{a}) = -\mathbf{b} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{a}$
$= - \mathbf{b} ^2 + \mathbf{b} \mathbf{a} \cos\frac{\pi}{3}$
$=-1+\frac{4}{3}\left(\frac{1}{2}\right)$
$=\frac{1}{3}$
$\left \overrightarrow{BA}\right ^2 = \left \mathbf{b}\right ^2 + \left \mathbf{a}\right ^2 - 2\left \mathbf{b}\right \left \mathbf{a}\right \cos\frac{\pi}{3}$
$=1+\left(\frac{4}{3}\right)^2-2\left(1\right)\left(\frac{4}{3}\right)\left(\frac{1}{2}\right)$
$=\frac{13}{9}$
$\frac{BN}{BA} = \frac{\frac{1}{3}}{\frac{13}{9}} = \frac{3}{13}$

Qn	Solution
2	Maclaurin's Series
(a)(i)	$y = \ln\left(1 + 2x + 3x^2\right)$
	$e^{y} = 1 + 2x + 3x^{2}$
	Differentiating with respect to x ,
	$\frac{\mathrm{d}y}{\mathrm{d}x}\mathrm{e}^{y} = 2 + 6x$
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \mathrm{e}^y + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 \mathrm{e}^y = 6$
	When $x = 0$,
	y = 0
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2$
	dx
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2$
	dx^2
	$y = 0 + (2)x + \frac{2}{2!}x^2 + \dots$
	$=2x+x^2+$ (up to x^2)
(ii)	$y = \ln\left(1 + 2x + 3x^2\right)$
	$= 2x + 3x^2 - \frac{\left(2x + 3x^2\right)^2}{2} + \dots \text{ (using standard series)}$
	$= 2x + 3x^2 - \frac{(2x)^2}{2} + \dots$
	$= 2x + x^2 + \dots (\text{up to } x^2) (\text{verified})$
(b)	$\frac{x}{\sqrt{4+x}} = x(4+x)^{-\frac{1}{2}}$
	$= x \left(4\right)^{-\frac{1}{2}} \left(1 + \frac{x}{4}\right)^{-\frac{1}{2}}$
	$=\frac{x}{2}\left(1+\left(-\frac{1}{2}\right)\frac{x}{4}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}\left(\frac{x}{4}\right)^{2}+\right)$
	$=\frac{1}{2}x - \frac{1}{16}x^2 + \frac{3}{256}x^3 (\text{up to } x^3)$

Qn	Solution
3	Sequences and Series & Complex Numbers
(a)	$\frac{z_1}{z_1} = \frac{r_1(\cos\theta_1 + i\sin\theta_1)}{1-z_1}$
	$\overline{z_2} - \overline{r_2(\cos\theta_2 + i\sin\theta_2)}$
	$r_1(\cos\theta_1 + i\sin\theta_1) = (\cos\theta_2 - i\sin\theta_2)$
	$=\frac{r_1(\cos\theta_1+\mathrm{i}\sin\theta_1)}{r_2(\cos\theta_2+\mathrm{i}\sin\theta_2)}\times\frac{(\cos\theta_2-\mathrm{i}\sin\theta_2)}{(\cos\theta_2-\mathrm{i}\sin\theta_2)}$
	$=\frac{r_1}{r_2}\frac{\cos\theta_1\cos\theta_2 - i\cos\theta_1\sin\theta_2 + i\sin\theta_1\cos\theta_2 - i^2\sin\theta_1\sin\theta_2}{\cos^2\theta_2 - i^2\sin^2\theta_2}$
	$=\frac{r_1}{r_2}\frac{\cos\theta_1\cos\theta_2 + \sin\theta_1\sin\theta_2 + i(\sin\theta_1\cos\theta_2 - \cos\theta_1\sin\theta_2)}{\cos^2\theta_2 + \sin^2\theta_2}$
	$r_2 \qquad \cos^2\theta_2 + \sin^2\theta_2$
	$=\frac{r_1}{r_2}\Big[\cos(\theta_1-\theta_2)+i\sin(\theta_1-\theta_2)\Big].$
	$\arg\left(\frac{z_1}{z_2}\right) = \theta_1 - \theta_2$
(b)	$\sum_{r=1}^{n} (\arg w_{r-1} - \arg w_r) = \arg w_0 - \arg w_1$
	$+ \arg w_1 - \arg w_2$
	$+\arg w_1 - \arg w_2 \\ +\arg w_2 - \arg w_3$
	+
	$+ \arg W_{n-2} - \arg W_{n-1}$
	$+ \arg w_{n-1} - \arg w_n$
	$= \arg w_0 - \arg w_n$
	$= \arg(0+i) - \arg(n+i)$
	$=\frac{\pi}{2}-\arg(n+i)$
	$\therefore k = \frac{\pi}{2}.$
(c)	As $n \to \infty$, $\arg(n+i) \to 0$,
	hence $\sum_{r=1}^{n} \arg\left(\frac{W_{r-1}}{W_r}\right)$ converges.
	$\sum_{r=1}^{\infty} \arg\left(\frac{w_{r-1}}{w_r}\right) = \frac{\pi}{2}$

(d)

$$\arg\left(\frac{1+i}{2+i}\right)^{3} + \arg\left(\frac{2+i}{3+i}\right)^{3} + \arg\left(\frac{3+i}{4+i}\right)^{3} + \dots$$

$$= 3\sum_{r=2}^{\infty} \arg\left(\frac{w_{r-1}}{w_{r}}\right)$$

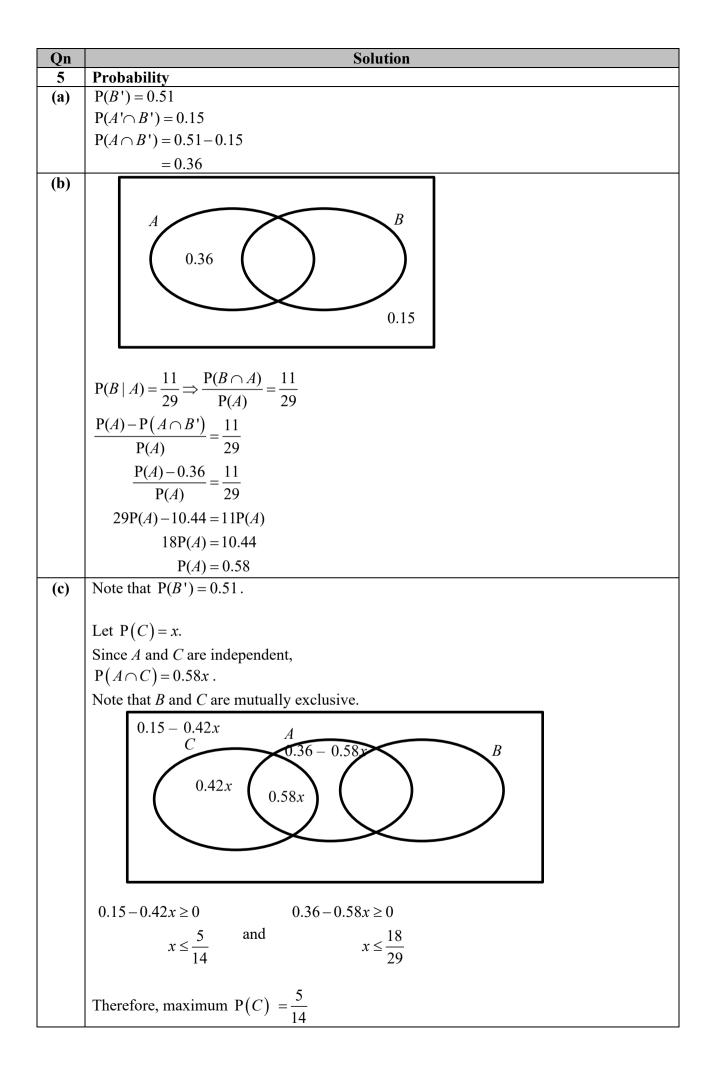
$$= 3\left(\sum_{r=1}^{\infty} \arg\left(\frac{w_{r-1}}{w_{r}}\right) - \arg\left(\frac{0+i}{1+i}\right)\right)$$

$$= 3\left(\left(\frac{\pi}{2}\right) - \left(\arg\left(0+i\right) - \arg\left(1+i\right)\right)\right)$$

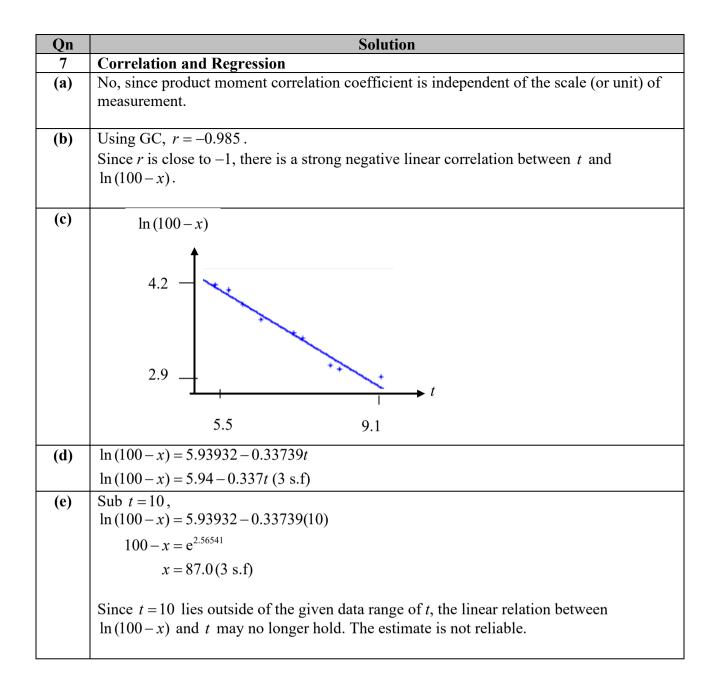
$$= 3\left(\frac{\pi}{2} - \left(\frac{\pi}{2} - \frac{\pi}{4}\right)\right)$$

$$= \frac{3\pi}{4}$$

Qn	Solution
4	Applications of Differentiation
(a)	When $y = 0$,
	$ut\sin\theta - \frac{1}{2}gt^2 = 0$
	2
	$t\left(u\sin\theta - \frac{1}{2}gt\right) = 0$
	$t = 0$ or $t = \frac{2u\sin\theta}{g}$
	$r = 0$ or $r = \frac{g}{g}$
	Since $t \neq 0$, $t = \frac{2u\sin\theta}{g}$.
	Since $i \neq 0, i = \frac{g}{g}$.
	$t = \frac{2u\sin\theta}{\alpha}$ represents the time taken for the projectile to return back to the same height
	$r = \frac{1}{g}$ represents the time taken for the projectile to return back to the same height
	as the origin at which it is launched.
(b)	When $t = \frac{2u\sin\theta}{2}$,
	when $t = \frac{g}{g}$,
	$(2u\sin\theta)$
	$x = u \left(\frac{2u\sin\theta}{g}\right)\cos\theta$
	$=\frac{u^2}{\sin 2\theta}$ (Shown)
	g
(c)	$\frac{dx}{d\theta} = \frac{2u^2}{g} \cos 2\theta$
	When $\frac{dx}{d\theta} = 0$, $\frac{2u^2}{g}\cos 2\theta = 0$
	when $\frac{d\theta}{d\theta} = 0$, $\frac{d\theta}{g} = 0$
	$\cos 2\theta = 0$
	$2\theta = \frac{\pi}{2}$
	$2\theta = \frac{1}{2}$
	ρ π (i.e. ρ ρ π)
	$\theta = \frac{\pi}{4} \left(\text{since } 0 < \theta < \frac{\pi}{2} \right)$
	$d^2x = 4u^2$
	$\frac{\mathrm{d}^2 x}{\mathrm{d}\theta^2} = -\frac{4u^2}{g}\sin 2\theta$
	C C
	When $\theta = \frac{\pi}{4}$, $\frac{d^2 x}{d\theta^2} = -\frac{4u^2}{g} < 0$
	8
	$\theta = \frac{\pi}{4}$ gives the maximum range of the projectile.
	u^2 . $(z(\pi))$
	$x = \frac{u^2}{g} \sin\left(2\left(\frac{\pi}{4}\right)\right)$
	$=\frac{u^2}{u}$
	g
	Hence the maximum range of the projectile is $\frac{u^2}{g}$.
	g g



Qn	Solution
6	Discrete Random Variable
(a)	Area of target board = $\pi(5^2) = 25\pi$
	Area of region with score 50
	$=\pi(1^2)=\pi$
	Probability of dart hitting region with score 50
	$=\frac{\pi}{25\pi}=\frac{1}{25}$
	Area of region with score 25
	$=\pi(3^2)-\pi=8\pi$
	Probability of dart hitting region with score 25
	$=\frac{8\pi}{25\pi}=\frac{8}{25}$
	25π 25
	$P(S = 75) = \frac{8}{25} \times \frac{1}{25} \times 2!$
	$=\frac{16}{625}$ (shown)
(b)	Area of region with score 0
	$= 25\pi - 9\pi = 16\pi$ Probability of dart hitting region with score 0
	$=\frac{16\pi}{25\pi}=\frac{16}{25}$
	s 0 25 50 75 100
	$\frac{P(S=s)}{P(S=s)} = \frac{16}{25} \times \frac{16}{25} \times \frac{16}{25} \times \frac{8}{25} \times 2! = \frac{16}{25} \times \frac{1}{25} \times 2! = \frac{16}{625} = \frac{1}{25} \times \frac{1}{25}$
	$P(S=s) \left \frac{16}{25} \times \frac{16}{25} \right \frac{16}{25} \times \frac{8}{25} \times 2! \left \frac{16}{25} \times \frac{1}{25} \times 2! \right \frac{16}{625} \left \frac{1}{25} \times \frac{1}{25} \right $
	$=\frac{256}{625} = \frac{256}{625} + \frac{8}{25} \times \frac{8}{25} = \frac{1}{625}$
	$=\frac{96}{625}$
(c)	From GC,
	E(S) = 20 and $Var(S) = 400$.



Qn	Solution
8	Normal and Sampling Distribution
(a)	Let A and S be the mass of a randomly chosen apple from Brand A and Brand S
	respectively.
	$S \sim N(78.8, 3.1^2)$ and $A \sim N(82.2, 2.2^2)$
	Required Probability
	$= \mathbf{P} \left(80 < A < 84 \right)$
	= 0.635 (3sf)
(b)	Let $T = A_1 + A_2 + \dots + A_5$.
	$E(T) = 5 \times 82.2 = 411$
	$Var(T) = 5 \times 2.2^2 = 24.2$
	$T \sim N(411, 24.2)$
	P(T > 408) = 0.729 (3 s.f.)
(c)	Let $D = S - 0.9A$.
	E(D) = 78.8 - 0.9(82.2) = 4.82
	$\operatorname{Var}(D) = 3.1^2 + 0.9^2 (2.2^2) = 13.5304$
	$D \sim N(4.82, 13.5304)$
	Required Probability
	$= \mathbf{P}(D > 1)$
	= 1 - P(D < 1)
	= 1 - P(-1 < D < 1)
	= 0.907 (3sf)

Qn	Solution
9	Hypothesis Testing
(a)	Tim can randomly select 20 Year 1 Boys, 20 Year 1 Girls, 20 Year 2 Boys and 20 Year 2 Girls to ensure that the sample of students is unbiased and representative of the cohort.
(b)	Tim should conduct a one-tailed test as he believes that students are spending more than 3 hours each day on their homework.
(c)	Unbiased estimate of population mean is $\overline{x} = \frac{16}{80} + 3$ = 3.2
	Unbiased estimate of population variance is $s^2 = \frac{1}{79} \left(164 - \frac{16^2}{80} \right)$
	$=\frac{804}{395} \text{ or } 2.0354430 = 2.04$
(d)	Let X be the time that a randomly chosen student spends on homework each day (in hours). Let μ denote the population mean time that students spend on homework each day (in hours). H ₀ : $\mu = 3$ H ₁ : $\mu > 3$ Under H ₀ , since $n = 80$ is large, by Central Limit Theorem, $\overline{X} \sim N\left(3, \frac{2.0354}{80}\right)$ approximately. Test statistics: $Z = \frac{\overline{X} - 3}{\sqrt{\frac{2.0354}{80}}}$ Level of significance: 5% Reject H ₀ if $p - value < 0.05$ Using GC, $p - value = 0.105$ (3 s.f) NORMAL FLOAT AUTO REAL RADIAN HP NORMAL FLOAT AUT

(e)
$$\begin{array}{ll} H_{0}: \mu = 3 \\ H_{1}: \mu \neq 3 \end{array} \\ \text{Under } H_{0} \text{, assuming that } X \sim N(3, \sigma^{2}), \ \overline{X} \sim N\left(3, \frac{\sigma^{2}}{10}\right). \\ \text{Test statistics: } Z = \frac{\overline{X} - 3}{\sqrt{\frac{\sigma^{2}}{10}}} \\ \text{Level of significance: } 2\% \\ \text{Reject } H_{0} \text{ if } z - \text{value} < -2.3263 \text{ or } z - \text{value} > 2.3263. \\ \text{Since } H_{0} \text{ is rejected}, \\ \frac{3.2 - 3}{\sqrt{\frac{\sigma^{2}}{10}}} < -2.3263 \text{ or } \frac{3.2 - 3}{\sqrt{\frac{\sigma^{2}}{10}}} > 2.3263 \\ \sigma < -0.27187 \text{ or } \sigma < 0.27187 \text{ (3 s.f.)} \\ \text{(rejected)} \\ 0 < \sigma < 0.27187 \text{ (since } \sigma > 0) \\ \text{Therefore, for teachers' claim to be rejected at 2\% level of significance, } 0 < \sigma < 0.271. \\ \end{array}$$

