Preliminary Examination 2020

Secondary 4 Express / Chemistry [6092]

Answers and Solutions

A1	Answer and Solution			Mark allocation [Total: 4]
(a)	A			
(b)	D			[1]
(c)	E			[1]
(d)	В			[1]
TOTAL S		-	est out and the	[1]
A2			17.1743	[Total: 9]
(a)	2Cu ₂ S(s) + 3O ₂ (g) → 2Cu ₂ O(s) + 2SO ₂	(e)		[1] correct equation
	1	(6)		[1] correct equation
(b)	Suggested solution:	-		(2) concet state symbols
	Test: Use acidified potassium manganate	(VII) solu	ition	[1]
	Observation: purple KMnO ₄ turns colourl	Observation: purple KMnO ₄ turns colourless		
(c)	Harmful effect to health:			
	Inggers asthma attacks, respiratory problems (breathing difficulty)			[1]
	Harmful effect to environment:			
	Leads to production of acid rain			[1]
(d)	moles of $SO_2 = \frac{22 \times 10^6}{64} = 343750$			[1] moles of SO ₂
	mole ratio SO ₂ : CaO = 1:1			[1] moles of CaO
	moles of CaO = 343 750			
	mass of CaO = 343 750 × (40+16) = 19250 kg			[1] 19250 kg
			公 加度	
A3				[Total: 6]
(a)	covalent			[1]
(b)	Y - oxygen; Z - carbon	7 - 1		[1]; [1]
(c)	COH ₂	1.0		[1]
(d)	MINE ACADA DI MANGELANDO ANTONIO	W.		La Caracteria de la Car
	This compound	true	false	[%] per correct tick;
		1		subtotal [2]
	has a low boiling point	-		TOUE for isoluble in
	has good electrical conductivity when molten		-	Accept TRUE for 'soluble in water', for ethanoic acid
	is very soluble in water	(~)	1	
	is a crystalline solid at room		-	
	temperature.	1		

A4	The second of th	[Total: 5]
(a)	C	[1]
(b)	С	[1]
(c)	D	[1]
(d)	C and E	[1], [1]
	(A) 100 (A)	"这一个人的一个人的
A5	41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[Total: 10]
(a)	bromine, chlorine, iodine	[1]
(b)(i)	Either one:	Advisor Calabara Calabara
	chlorine or fluorine	[1]
	- more reactive than bromine	[1]
	(NOT 'above bromine in Group VII')	
(b)(ii)	Either one:	[1]
	F ₂ + 2Br → 2F + Br ₂	
	Ct ₂ + 2Br ⁻ → 2Cl ⁻ + Br ₂	
(c)(i)	Any metal above aluminium in the reactivity series:	[1]
	potassium / sodium / calcium / magnesium	
(c)(ii)	2 AL (s) + Fe ₂ O ₃ (s) → 2 Fe (L) + AL ₂ O ₃ (s)	
	100 kg of Al = 3704 moles	[1] calculation to find either
	∴ moles of Fe ₂ O ₃ = 1852	limiting reactant [Fe ₂ O ₃] or
	mass of Fe ₂ O ₃ = 296 kg	reactant in excess [AL]
	Limiting reactant: iron(III) oxide	
	OR	(allow ECF if AL is incorrectly
	100 kg of Fe ₂ O ₃ = 625 moles	determined to be the limiting
	moles of Al = 1250 moles	reactant; award M1)
	mass of At = 33.75 kg	
	Reactant in excess : AL	[M1] mole of Al_2O_3 = mole of Fe_2O_3 = 625
	Using 625 moles of Fe ₂ O ₃ ,	
	moles of $Al_2O_3 = 625$ (mole ratio Fe_2O_3 : $Al_2O_3 = 1:1$)	Mr of Al ₂ O ₃
	theoretical yield of Al ₂ O ₃ = 625 × 102	= 2(27) + 3(16) = 102
	= 63 750 g (or 63.75 kg) % yield of Al ₂ O ₃ = (50 kg / 63.75 kg) × 100 %	[M1] theoretical yield of Al ₂ O
	= 78.4% (to 3 s.f.)	[NA1] Wyiold
		[M1] %yield
		= actual yield theoretical yield × 100%
		[1] 78.4%

Scanned with CamScanner

luestion	Answer and Solution	Mark allocation
A6		[Total: 11]
(a)(i)	2Cl ⁻ (l) → Cl ₂ (g) + 2e	[1] balanced equation
1-11-1		[1] correct state symbols
(a)(ii)	test: moist blue litmus	[1] accept red litmus
	observations: blue litmus <u>turns red</u> and <u>bleached</u>	[1] bleaching effect of chlorine
(b)(i)	Decreases amount of electrical energy needed to keep electrolyte molten.	[1] Lower energy demands
(b)(ii)	Calcium.	[1]
	Present as impurity in electrolyte and will also get discharged at cathode.	[1]
(c)(i)	M is more reactive than copper and/or metal X.	[1] answer must show comparison between metals
(c)(ii)	Add (a piece of) copper into XSO ₄ solution.	[1] addition of metal 1 into
	If grey deposit (X) formed on copper and green solution fades / turns blue, copper is more reactive than X.	salt solution of metal 2
	If no observable change, then copper is less reactive than X.	[1] correctly describes results
	If no observable change, then copper is restricted	(colour change of solution,
	OR	appearance of deposit) to
	Add a piece of X into copper(II) sulfate solution.	support order of reactivity
	If pink deposit (Cu) is formed on X and blue solution fades /	
	turns green, X is more reactive than copper.	[1] include observation for
	If no observable change, then X is less reactive than copper.	negative test
A7		[Total: 5]
	Alloy is a mixture of a metal and one or more elements.	[1]
(a)	Protective layer / barrier;	[1]
(b)	prevents oxygen and water from coming in contact and reacting with iron.	[1]
(c)	Zinc is more reactive than iron, hence will corrode	[1]
(0)	preferentially / <u>corrodes</u> in place of iron / provides sacrificial protection	[1]
West Description	Sacrificial protection	
		[Total: 12]
B8	(i) Oxidation state of N decreases from +5 in KNO ₃ to 0 in	
(a)	(i) Oxidation state of N decreases from 45 in Archives to N ₂ . Hence KNO ₃ has gone through reduction.	[1]
	(ii) For every mole of KNO₃, 1.25 mole of O₂ produced. For every mole of KClO₄, 2 moles of O₂ produced. OR KNO₃ does not release all of its oxygen atoms as its	[1] more (moles/amount) of oxygen for potassium perchlorate

estion_	Answer and Solution	[Total: 12]
B8		[1]
(b)	(i) Energy profile diagram for exothermic reaction.	أزأ
(-,	Correct reactant(s) and Droduct(s)	[1]
	Correct enthalpy change for either S or C	
		[1] mass on carbon and mass
	(ii)	of sulfur in 1 kg (based on
	in 1 kg of black powder,	percentage by mass)
	mass of carbon = 15% of 1 kg = 150 g	
	mass of sulfur = 10% of 1 kg = 100 g	[1] energy produced per g of
		carbon and sulfur
	Energy produced for combustion of 1g of:	Caracin and a
	carbon = (-393 + 12) = - 32.75 kJ	
	sulfur = (-2368 ÷ 32) = - 74 kJ	[1] calculation to show sum of
		energy released > 10,000 kJ
	Total energy released	energy released > 10,000 is
	= (150 × 32.75) + (100 × 74)	
	= 12,312.5 kJ > 10,000 kJ (shown)	
(c)	Mixture 1: orange/red flame, not so bright	[1]
1-1	Mixture 2: blue/green, very bright flame	[1]
(d)	Decomposition of KNO ₃ produces oxygen, which reacts with	[1]
	to a seed used during	
(-/	atmospheric nitrogen or nitrogen produced during	
(-/	atmospheric nitrogen or nitrogen produced during decomposition of KNO ₃ , at <u>high temperature</u> (due to highly	[1]
(-/	decomposition of KNO ₃ , at <u>high temperature</u> (due to highly exothermic reaction) to produce nitrogen oxides.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	atmospheric nitrogen or nitrogen produced during decomposition of KNOs, at high temperature (due to highly exothermic reaction) to produce nitrogen oxides.	
	decomposition of KNO ₃ , at <u>high temperature</u> (due to highly exothermic reaction) to produce nitrogen oxides.	[Total: 8]
	decomposition of KNO ₃ , at <u>high temperature</u> (due to highly exothermic reaction) to produce nitrogen oxides.	[Total: 8]
В9	decomposition of KNO ₃ , at <u>high temperature</u> (due to highly exothermic reaction) to produce nitrogen oxides. silver nitrate Experiment 1	[Total: 8] [1] [1] at least 3 correct state
B9 (a)	decomposition of KNO ₃ , at <u>high temperature</u> (due to highly exothermic reaction) to produce nitrogen oxides. silver nitrate Experiment 1	[Total: 8]
B9 (a)	decomposition of KNO ₃ , at <u>high temperature</u> (due to highly exothermic reaction) to produce nitrogen oxides. silver nitrate Experiment 1 Anode: 4OH (aq) → O ₂ (g) + 2H ₂ O (l) + 4e	[Total: 8] [1] [1] at least 3 correct state symbols
B9 (a)	decomposition of KNO ₃ , at <u>high temperature</u> (due to highly exothermic reaction) to produce nitrogen oxides. silver nitrate Experiment 1	[Total: 8] [1] [1] at least 3 correct state
B9 (a)	decomposition of KNO ₃ , at <u>high temperature</u> (due to highly exothermic reaction) to produce nitrogen oxides. Silver nitrate Experiment 1 Anode: 4OH' (aq) → O ₂ (g) + 2H ₂ O (l) + 4e Cathode: Ag* (aq) + e → Ag (s) Experiment 2	[Total: 8] [1] [1] at least 3 correct state symbols [1] anode, expt 1
B9 (a)	decomposition of KNO ₃ , at high temperature (due to highly exothermic reaction) to produce nitrogen oxides. Silver nitrate Experiment 1 Anode: 40H (aq) → O ₂ (g) + 2H ₂ O (l) + 4e Cathode: Ag* (aq) + e → Ag (s) Experiment 2 Anode: Ag (s) → Ag* (aq) + e	[Total: 8] [1] [1] at least 3 correct state symbols
B9 (a)	decomposition of KNO ₃ , at <u>high temperature</u> (due to highly exothermic reaction) to produce nitrogen oxides. Silver nitrate Experiment 1 Anode: 4OH' (aq) → O ₂ (g) + 2H ₂ O (l) + 4e Cathode: Ag* (aq) + e → Ag (s) Experiment 2	[Total: 8] [1] [1] at least 3 correct state symbols [1] anode, expt 1 [1] anode, expt 2
B9 (a)	decomposition of KNO ₃ , at high temperature (due to highly exothermic reaction) to produce nitrogen oxides. Silver nitrate Experiment 1 Anode: 40H (aq) → O ₂ (g) + 2H ₂ O (l) + 4e Cathode: Ag* (aq) + e → Ag (s) Experiment 2 Anode: Ag (s) → Ag* (aq) + e	[Total: 8] [1] [1] at least 3 correct state symbols [1] anode, expt 1
B9 (a)	decomposition of KNO ₃ , at high temperature (due to highly exothermic reaction) to produce nitrogen oxides. Silver nitrate Experiment 1 Anode: 40H (aq) → O ₂ (g) + 2H ₂ O (l) + 4e Cathode: Ag* (aq) + e → Ag (s) Experiment 2 Anode: Ag (s) → Ag* (aq) + e	[Total: 8] [1] [1] at least 3 correct state symbols [1] anode, expt 1 [1] anode, expt 2
89 (a) (b)	decomposition of KNOs, at high temperature (due to highly exothermic reaction) to produce nitrogen oxides. silver nitrate Experiment 1 Anode: $4OH'(aq) \rightarrow O_2(g) + 2H_2O(I) + 4e$ Cathode: $Ag^*(aq) + e \rightarrow Ag(s)$ Experiment 2 Anode: $Ag(s) \rightarrow Ag^*(aq) + e$ Cathode: $Ag(s) \rightarrow Ag(s)$	[Total: 8] [1] [1] at least 3 correct state symbols [1] anode, expt 1 [1] anode, expt 2
89 (a) (b)	decomposition of KNO ₃ , at high temperature (due to highly exothermic reaction) to produce nitrogen oxides. silver nitrate Experiment 1 Anode: 4OH' (aq) → O ₂ (g) + 2H ₂ O (l) + 4e Cathode: Ag* (aq) + e → Ag (s) Experiment 2 Anode: Ag (s) → Ag* (aq) + e Cathode: Ag* (aq) + e → Ag (s)	[Total: 8] [1] [1] at least 3 correct state symbols [1] anode, expt 1 [1] anode, expt 2
89 (a) (b)	decomposition of KNO ₃ , at high temperature (due to highly exothermic reaction) to produce nitrogen oxides. silver nitrate Experiment 1 Anode: 4OH (aq) → O ₂ (g) + 2H ₂ O (l) + 4e Cathode: Ag* (aq) + e → Ag (s) Experiment 2 Anode: Ag (s) → Ag* (aq) + e Cathode: Ag* (aq) + e → Ag (s) Experiment 1: at anode mole ratio e: O ₂ = 4:1 at cathode mole ratio e: Ag = 1:1	[Total: 8] [1] [1] at least 3 correct state symbols [1] anode, expt 1 [1] anode, expt 2 [1] cathode, expt 1 or 2
89 (a) (b)	decomposition of KNO ₃ , at high temperature (due to highly exothermic reaction) to produce nitrogen oxides. silver nitrate Experiment 1 Anode: 4OH' (aq) → O ₂ (g) + 2H ₂ O (l) + 4e Cathode: Ag' (aq) + e → Ag (s) Experiment 2 Anode: Ag (s) → Ag' (aq) + e Cathode: Ag' (aq) + e → Ag (s) Experiment 1: at anode mole ratio e: O ₂ = 4:1	[Total: 8] [1] [1] at least 3 correct state symbols [1] anode, expt 1 [1] anode, expt 2 [1] cathode, expt 1 or 2
89 (a) (b)	decomposition of KNO ₃ , at high temperature (due to highly exothermic reaction) to produce nitrogen oxides. silver nitrate Experiment 1 Anode: 4OH (aq) → O ₂ (g) + 2H ₂ O (l) + 4e Cathode: Ag* (aq) + e → Ag (s) Experiment 2 Anode: Ag (s) → Ag* (aq) + e Cathode: Ag* (aq) + e → Ag (s) Experiment 1: at anode mole ratio e: O ₂ = 4:1 at cathode mole ratio e: Ag = 1:1 so for every 4 mol of electrons, 4 mol of Ag is deposited	[Total: 8] [1] [1] at least 3 correct state symbols [1] anode, expt 1 [1] anode, expt 2 [1] cathode, expt 1 or 2 [1] mole ratio of O ₂ : Ag OR identifying moles of Ag = 4
89 (a) (b)	decomposition of KNO ₃ , at high temperature (due to highly exothermic reaction) to produce nitrogen oxides. silver nitrate Experiment 1 Anode: $4OH'(aq) \rightarrow O_2(g) + 2H_2O(l) + 4e$ Cathode: $Ag^*(aq) + e \rightarrow Ag(s)$ Experiment 2 Anode: $Ag(s) \rightarrow Ag^*(aq) + e$ Cathode: $Ag^*(aq) + e \rightarrow Ag(s)$ Experiment 1: at anode mole ratio e: $O_2 = 4:1$ at cathode mole ratio e: $Ag(s) = 1:1$ so for every 4 mol of electrons, 4 mol of $Ag(s) = 1:1$ so for every 4 mol of electrons, 4 mol of $Ag(s) = 1:1$ 100 cm ³ of $Ag(s) = 1:1$	[Total: 8] [1] [1] at least 3 correct state symbols [1] anode, expt 1 [1] anode, expt 2 [1] cathode, expt 1 or 2 [1] mole ratio of O ₂ : Ag OR identifying moles of Ag = 4 × moles of oxygen
89 (a) (b)	decomposition of KNO ₃ , at high temperature (due to highly exothermic reaction) to produce nitrogen oxides. silver nitrate Experiment 1 Anode: $4OH'(aq) \rightarrow O_2(g) + 2H_2O(l) + 4e$ Cathode: $Ag^*(aq) + e \rightarrow Ag(s)$ Experiment 2 Anode: $Ag(s) \rightarrow Ag^*(aq) + e$ Cathode: $Ag^*(aq) + e \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $e: O_2 = 4:1$ at cathode mole ratio $e: Ag = 1:1$ so for every 4 mol of electrons, 4 mol of $Ag(s) = 1:4$ $Ag(s) \rightarrow Ag(s) = 1:4$ $Ag(s) \rightarrow Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ at another anothe	[Total: 8] [1] [1] at least 3 correct state symbols [1] anode, expt 1 [1] anode, expt 2 [1] cathode, expt 1 or 2 [1] mole ratio of O ₂ : Ag OR identifying moles of Ag = 4 × moles of oxygen
89 (a) (b)	decomposition of KNO ₃ , at high temperature (due to highly exothermic reaction) to produce nitrogen oxides. silver nitrate Experiment 1 Anode: $4OH'(aq) \rightarrow O_2(g) + 2H_2O(l) + 4e$ Cathode: $Ag^*(aq) + e \rightarrow Ag(s)$ Experiment 2 Anode: $Ag(s) \rightarrow Ag^*(aq) + e$ Cathode: $Ag^*(aq) + e \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $e: O_2 = 4: 1$ at cathode mole ratio $e: Ag = 1: 1$ so for every 4 mol of electrons, 4 mol of $Ag(s) = 1: 4$ $Ag(s) \rightarrow Ag(s) = 1: 4$ $Ag(s) \rightarrow Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mol	[Total: 8] [1] [1] at least 3 correct state symbols [1] anode, expt 1 [1] anode, expt 2 [1] cathode, expt 1 or 2 [1] mole ratio of O ₂ : Ag OR identifying moles of Ag = 4 × moles of oxygen
89 (a) (b)	decomposition of KNO ₃ , at high temperature (due to highly exothermic reaction) to produce nitrogen oxides. silver nitrate Experiment 1 Anode: $4OH'(aq) \rightarrow O_2(g) + 2H_2O(l) + 4e$ Cathode: $Ag^*(aq) + e \rightarrow Ag(s)$ Experiment 2 Anode: $Ag(s) \rightarrow Ag^*(aq) + e$ Cathode: $Ag^*(aq) + e \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $e: O_2 = 4:1$ at cathode mole ratio $e: Ag = 1:1$ so for every 4 mol of electrons, 4 mol of $Ag(s) = 1:4$ $Ag(s) \rightarrow Ag(s) = 1:4$ $Ag(s) \rightarrow Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 1: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 2: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 3: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ Experiment 4: at anode mole ratio $Ag(s) \rightarrow Ag(s)$ at another anothe	[Total: 8] [1] [1] at least 3 correct state symbols [1] anode, expt 1 [1] anode, expt 2 [1] cathode, expt 1 or 2 [1] mole ratio of O ₂ : Ag OR identifying moles of Ag = 4 × moles of oxygen

Destion	The state of the s	Wark allocation
B10	Either	[Total: 10]
(a)	(i) Group I	[1] Group number must be in
		roman numeral
	(ii) By electrolysis.	[1]
	Group I metals highly reactive / forms very stable	[1] reactivity of Group I or
	compounds that can only be decomposed by electrolysis.	
		stability of Group I compound
(b)	Titrate 25.0 cm ³ of aqueous M ₂ CO ₃ with hydrochloric acid,	[1] use of hydrochloric acid
	HC/, with use of a suitable indicator (e.g. methyl grange), to	(a) ase or my around the bell
	find volume of acid needed for neutralisation.	[1] method – titration
	Add 25.0 cm3 of aqueous M2CO3 and determined volume of	[1] memod titudion
	acid to produce MC/ solution.	
	Evaporate some water to saturate the MC/ solution.	[1] saturated salt solution
	Cool the saturated solution for crystals to form.	[1] cooling the solution
1-1		
(c)	moles of chlorine atoms = $(1.42 \div 35.5) = 0.04$	[1]
	mass of M = 6.72 g - 1.42 g = 5.3 g	
	mole ratio M : Cl = 1 : 1 / moles of M = 0.04	[1]
	A_r of $M = (5.3 \div 0.04) = 132.5$	[1]
	The first control of the first	
1000		Carlo Strand Carlo Strands
B10	OR	[Total: 10]
(a)	Rate increases.	
	Higher pressure, more reacting particles per unit volume,	[1]
	higher frequency / number of effective collisions per unit	[1]
	time.	
	NOT: more reacting particles possessing activation energy /	
	↑ pressure = particles move faster / gain K.E. (wrong	
	concept)	
(b)	(i) enthalpy is negative/ reaction is exothermic	[1]
(0)	(ii) powdered catalyst (smaller particle size) provides	[1]
	greater surface area for a faster reaction	[-]
	greater surface area for a faster reaction	
(c)	ammonia is alkaline;	[1]
(c)	pH of the solution in reacting vessel should <u>decrease</u> as	[1]
		1-1
	ammonia gas is used up.	
(d)	moles of NO = 720 ÷ 24 = 30	[1]
(0)	mole ratio of NO: $HNO_3 = 1:1$	[1]
	maximum mass of HNO ₃ = $30 \times (63) = 1890 \text{ g}$	[1]
(e)	$4NH_3(g) + 8O_2(g) \rightarrow 4HNO_3(aq) + 4H_2O(g)$	[1]
(-)	OR	
	$NH_3(g) + 2O_2(g) \rightarrow HNO_3(aq) + H_2O(g)$	
	End of Answers and Marking Scheme	

SEC 4E CHEMISTRY 6092
PRELIMINARY EXAM 2020 PAPER 1 MARK SCHEME

		Answer
Α	21	В
A	22	D
С	23	С
D	24	D
В	25	A
С	26	D
В	27	Α
С	28	В
В	29	В
D	30	Α
С	31	D
A	32	В
С	33	С
D	34	С
В	35	D
<u> </u>	36	A
		С
		С
		А
		В
	C B C B C C A C D	A 22 C 23 D 24 B 25 C 26 B 27 C 28 B 29 D 30 C 31 A 32 C 33 D 34 B 35 D 36 D 37 B 38 C 39