Anderson Junior College Preliminary Examination 2015 H2 Mathematics Paper 2 (9740/02)

	······································
1a (i)	$\frac{dw}{dt} = -2(e^{-2x} + A)^{-2}(-2e^{-2x}) = \frac{4e^{-2x}}{(e^{-2x} + A)^2}$
	$dx \qquad (e^{-w} + A)^2$
	$\therefore \text{ LHS} = e^{2x} \frac{dx}{dx} = \frac{1}{(e^{-2x} + A)^2} = w^2 = \text{RHS} \text{ (verified)}$
(ii)	$\frac{dy}{dt} = \frac{2}{t^2 t^2}$
	$\frac{dx}{c} = \frac{e^{-2x} + A}{c}$
	$y = \int \frac{1}{e^{-2x} + A} dx$
	$=\frac{1}{1}\int \frac{2Ae^{2x}}{1-e^{2x}} dx$
	$\begin{array}{c} A \stackrel{J}{} 1 + A e^{2x} \\ 1 \stackrel{J}{} 1 = 1 e^{-x} 2x e^{2x} \\ \end{array}$
	$= -\frac{\ln 1 + Ae^{2x} + B}{A}$, where <i>B</i> is an arbitrary constant.
1b	Let S be the amount of salt (in grams) at time t minutes. dS
	$\frac{dS}{dt}$ = rate of salt entering tank – rate of salt leaving tank
	$=2(5)-\frac{S}{100}(5)$
	200-S
	$=\frac{1}{20}$ g/min
	$\frac{1}{200-S}\frac{dS}{dt} = \frac{1}{20}$
	$\int \frac{1}{1} ds \int \frac{1}{1} ds$
	$\int \frac{1}{200 - S} \mathrm{d}S = \int \frac{1}{20} \mathrm{d}r$
	$-\ln 200 - S = \frac{1}{20}t + c$
	$200 - S = A e^{-\frac{1}{20}t}$
	$S = 200 - Ae^{-\frac{1}{20}t}$
	When $t = 0$, $S = 50 \implies 50 = 200 - A \implies A = 150$
	$\therefore S = 200 - 150e^{-\frac{1}{20}t}$
	When concentration is 1 g/litre, $S = 100$.
	$\Rightarrow 100 = 200 - 150e^{-\frac{1}{20}t} \Rightarrow e^{-\frac{1}{20}t} = 2/3$
	:. $t = -20\ln(2/3) = 8.11 \min(3 \text{ s.f.})$
2	$z^5 + 32 = 0$
	$z^{3} = -32 = 32e^{(\pi + 2k\pi)t}$
	$z = 2e^{(\frac{\pi}{5} + \frac{2\pi}{5})i}, k = 0, \pm 1, \pm 2$
	$=2e^{-\frac{3\pi}{5}i}, 2e^{-\frac{\pi}{5}i}, 2e^{\frac{\pi}{5}i}, 2e^{\frac{3\pi}{5}i}, 2e^{\frac{3\pi}{5}i}, 2e^{\pi i}$
2i	Method 1
	$\frac{n}{(n-1)^n} = n \left(\frac{n\pi}{5}\right)^i \left(4n\pi\right);$
	$\left \left(\frac{z_1}{z_2^*} \right) \right = \frac{2^n e^{\sqrt{3}/2}}{\left(-\frac{3n\pi}{2} \right)^i} = e^{\left(\frac{\sqrt{3}}{2} \right)^i}$
	$2^n e^{(5)}$

For
$$\left(\frac{z_1}{z_2}\right)^n$$
 to be real and positive, smallest $n = 5$
Method 2
 $\arg\left(\frac{z_1}{z_2}\right)^n = n\left[\arg(z_1) - \arg(z_2^n)\right]$
 $= n\left[\arg(z_1) - (-\arg(z_2^n))\right]$
 $= n\left[\frac{\pi}{5} + \frac{3\pi}{5}\right]$
 $= \frac{4n\pi}{5}$
For $\left(\frac{z_1}{z_2^n}\right)^n$ to be real and positive,
 $\frac{4n\pi}{5} = 2k\pi$, $k \in \mathbb{I}$
 $n = \frac{5}{2}k$, $k \in \mathbb{I}$, so smallest $n = 5$
2iii
Let the complex number represented by A' be x+iy
BA rotates 90° about B to get BA':
 $(x + iy) - 2e^{i\pi} = (-i)\left(2e^{i\frac{\pi}{5}} - 2e^{i\pi}\right)$
 $x + iy = (-2) - i\left[2e^{\frac{1}{5}\pi} - (-2)\right]$ since $e^{i\pi} = -1$
 $x + iy = -2 - i\left[2\cos\frac{\pi}{5} + 2i\sin\frac{\pi}{5} + 2i\right]$
Real part $= -2 - 2i^2\sin\frac{\pi}{5} = -2 + 2\sin\frac{\pi}{5}$
3(i)
 $\overline{AB} = \left(\frac{2}{4}\right) - \left(\frac{6}{0}\right) = \left(-\frac{2}{2}\right) = 2\left(-\frac{1}{1}\right)$ and $\overline{AC} = \left(\frac{3}{2}\right) - \left(\frac{6}{0}\right) = \left(-\frac{3}{2}\right)$
Normal to plane ABC is $\mathbf{r} \in \left(\frac{2}{0}\right) = \left(\frac{2}{0}\right) + \left(\frac{6}{0}\right) = 12$

3(ii) Since S lies on the perpendicular from (3,-1, 4) to plane
$$x - y + z = 1$$
,
 $\therefore \overline{OS} = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ (Note S lies along perpendicular from D to p₁.
 \therefore Line SD: $\mathbf{r} = \overline{OD} + \lambda n_{p_1}$)
 $\Rightarrow 6 + 2\lambda + 4 + \lambda = 12$
 $\Rightarrow \lambda = \frac{2}{3}$
 $\therefore \overline{OS} = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 4 + \lambda \end{pmatrix} = 12$
 $\Rightarrow \lambda = \frac{2}{3}$
 $\therefore \overline{OS} = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -1 \\ -1 \\ 4 \end{pmatrix} = \begin{pmatrix} \frac{11}{3} \\ -\frac{5}{3} \\ \frac{14}{3} \end{pmatrix}$. So $\mathbf{S} = (\frac{11}{3}, -\frac{5}{3}, \frac{14}{3})$.
 $\overrightarrow{OM} = \overline{OS} + \overline{OD} = \frac{1}{2} \begin{bmatrix} \frac{11}{3} \\ -\frac{5}{3} \\ \frac{14}{3} \end{bmatrix} = \mathbf{S}$ (where \mathbf{S} is nor $\mathbf{T} = \mathbf{S}$).
Notice \overline{OM} is nor $\frac{1}{2} \overline{SD}$.
Normal to $p_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{10}{3} \\ -\frac{4}{3} \\ \frac{13}{3} \end{pmatrix} = \frac{9}{\frac{13}{3}} = 9$
 $\Rightarrow \mathbf{r} \cdot \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} = 9$
4(i) Let *n* be the number of intervals between the first hook to the last.
 $\frac{\pi}{2} [2(50) + (n-1)(-2)] \le 500$
 $n^2 - 51n + 500 \ge 0$
 $n \le 37.8$ is rejected since any additional intervals beyond 13 will give a total length greater than 50.
Since the smallest number of intervals is 13, number of hooks = 13 + 1 = 14

4(ii)				$aa(1 a a^n)$			
-(1)	$80+80(0.9)+80(0.9)^{2}++80(0.9)^{n}=\frac{80(1-0.9^{n})}{1-0.9}$						
	$\frac{80(1-0.9^n)}{500} > 500$						
	$\frac{1-0.9}{1-0.9}$						
	$0.9^n < 0.375$	(0.375)					
	n = (0.3) < 10 n > 9.31	(0.373)					
	Smallest $n =$	10					
4(iii)	Length of the ribbon between the n^{th} and $(n+1)^{\text{th}}$ hook must satisfy the condition:						
	$80(0.9)^{n-1} \ge 50 - 2(n-1)$						
4(iv)	Using GC to solve the inequality in (iii),						
	$n \le 9.28$ or $n \ge 21.3$ (N.A since there are only 14 hooks from (i)) Thus the number of hooks with ribbons will be 10.						
5(i)	The interviewer 4 Indians, and 3	r will station be from other rad	eside the audito	orium exit and ne auditorium a	interview the f	first 4 Cl	hinese, 4 Malays, has ended.
	[Appropriate s	strata <u>must be</u>	<u>suggested</u> (m	ale/female, ra	ce, age group,	, etc.), a	nd <u>quota must</u>
	be set for each	strata.]					
5(ii)	To obtain a stra	tified sample of	f size 30 from	a population o	of size 650, dra	w rand	om samples
	group, with san	ndom samplin ple sizes as fo	g) from each r llows:	nutually exclus	sive subgroup,	aiviaea	based on age
	Subgroup	below 21	21 - 35	36 - 50	above 50	Total	
	(age group) Sample size	years old $\frac{30}{30} \times 130$	years old $\frac{30}{100} \times 195$	years old $\frac{30}{30} \times 260$	$\frac{30}{30} \times 65$		
		= 6	= 9	=12	=3	30	
	After selecting the 30 people, the surveyor will contact them through telephone using the contact numbers in the registration list.						
	Difficulty could be encountered in contacting some of the selected people after the event. For stratified sampling, the person selected that is hard to contact cannot be simply replaced by another person (this is allowed if it is quota sampling).						
6	No of wowo -	$(2 1) 1 \times (21)^3$	- 422				
	No of ways =	$(3-1)! \times (3!)$	= 432				
6 last	Method 1 (Dire	ct) s is with Father	r & his mother	is separated			
pur	$3! \times (2!)^2 \times 2! >$	< 2 = 96					
2	nite Andy C.8		F				
_ <u>5</u> u	& Ben	MC	Мс	Mc			
	Case 2 : Charle	s is with Moth	er & his father	is separated.			
	No of ways = 96 (same as case 1)						
	Case 3: Charles	's family is to	gether:	aAMa Fbl	BMb CFcN	Лс	
	$3! \times (2!)^2 \times 3! =$	=144					
3 units Andy & Ben C family							
	Total no of way	vs = 96 x 2 + 14	44 = 336				

8ii	
2	
	+ P
	$\begin{vmatrix} \vdots & \vdots $
8iii	With point P removed, the remaining points lie close to an exponential curve, as x increases, y
	decreases at a decreasing rate, hence consistent with a model of the form $y = Ae^{bx}$.
8iv	Since x is the controlled variable, we use the regression line of $\ln y$ on x .
	From GC, $\ln y = -0.24888x + 3.6276$
	When $y = 7$, $\ln 7 = -0.24888x + 3.6276$
	r = 6.75 = 7 (nearest whole no)
	x = 0.75 = 7 (noticest whole no)
9(i)	P(Mr Red wins in 3 rd draw)
	2 3 2 3 3
	$\begin{vmatrix} = -x - x - x - x - x - x - x - x - x - $
	108
	$=\frac{1}{3125}$
	0.02456
9(ji)	$= 0.05450$ $P(Mr Blue wins in e^{th} draw)$
9(11)	$(2 - 2)^{n-1} (2 - 2)$
	$=\left(\frac{2}{-\times},\frac{3}{-}\right)$ $\left(\frac{2}{-\times},\frac{2}{-}\right)$
	$\begin{pmatrix} 5 & 5 \end{pmatrix}$ $\begin{pmatrix} 5 & 5 \end{pmatrix}$
	$4(6)^{n-1}$
	$=\frac{1}{25}\left[\frac{3}{25}\right]$
0.000	
9(111)	Required Prob
	$= \frac{P(Mr \text{ Red wins in 3rd draw)}}{P(Mr \text{ Red wins in 3rd draw)}}$
	P(winner wins in his 3rd draw)
	108
	$-\frac{4(6)^{3-1}}{108}$
	$\left \frac{1}{25} \right \frac{3}{25} \left \frac{1}{25} \right + \frac{100}{2125}$
	$=\frac{15}{1}$
	19
9(iv)	P(Mr Blue wins)
	$-\sum_{n=1}^{\infty} \frac{4}{n} \left(\frac{6}{n}\right)^{n-1}$
	$\left - \sum_{n=1}^{\infty} \overline{25} \left(\overline{25} \right) \right $
	4
	$\frac{1}{25}$
	$=\frac{25}{6}$
	$1-\frac{1}{25}$
	$=\frac{\tau}{10}$
	19

10 $H_0: \mu = 1.2$ $H_1:\mu<1.2$ Test statistic : $T = \frac{\overline{X} - \mu}{S/r} \Box t(9)$ Reject H₀ if *p*-value < 0.10x = 1.1021, s = 0.179503, n = 10By using GC, *p*-value = 0.059335 < 0.10. Reject H₀. There is sufficient evidence to say that the mean weight of melons is less than 1.2 kg, i.e. the farmer's claim is incorrect. $H_0: \mu = 1.2$ $H_1: \mu \neq 1.2$ H₀ is not rejected $\Rightarrow \alpha < 5.9335 \times 2$ $\Rightarrow \alpha < 11.9 (3 \text{ s.f.})$ 1st sample : n = 10, $\sum x = 11.021$ and $\sum x^2 = 12.436237$ 10(i) 2^{nd} sample : n = 40, $\sum x = 45.738$ and $\sum x^2 = 72.576$ Combined : n = 50, $\sum x = 56.759$ and $\sum x^2 = 85.012237$ Unbiased estimate of population mean $=\frac{56.759}{50}=1.13518$ Unbiased estimate of population variance $= \frac{1}{49} \left| 85.012237 - \frac{(56.759)^2}{50} \right| = 0.42001$ 10ii $H_0: \mu = m$ H_1 : $\mu < m$ Since n = 50, we conduct Z-test. $Z = \frac{\overline{X} - \mu}{\sqrt[s]{\sqrt{n}}} \square N(0, 1)$ Test statistic : Do not reject H₀ if $\frac{1.13518 - m}{\sqrt{0.42001}/\sqrt{50}} > -1.64485$ $\Rightarrow 0 \le m < 1.29 (3 \text{ sf.})$ Let X and Y denotes the number of chocolate and banana muffins sold respectively. 11a $X \sim P_o(3), \quad Y \sim P_o(\lambda), \quad X + Y \sim P_o(3 + \lambda)$ In 1 hour, P(X+Y=2) = P(Y=4) $\frac{e^{-(3+\lambda)}(3+\lambda)^2}{2!} = \frac{e^{-\lambda}\lambda^4}{4!}$ Or simply use GC to sketch y=P(X+Y=2) - P(Y=4) to find λ at the x-intercept. $\frac{e^{-3}\left(3+\lambda\right)^2}{2} = \frac{\lambda^4}{24}$ $12e^{-3}\left(3+\lambda\right)^2 - \lambda^4 = 0$ Using GC, $\lambda = 1.95752 = 1.96(3sf)$

	Ear 9 hours $V = D(24) = V = D(15.66016)$
	For 8 hours, $A \sim F_o(24)$, $I \sim F_o(15.00010)$
	Since both means >10, Using normal approximation, $\mathbf{X} = \mathbf{N}(24, 24)$ and $\mathbf{Y} = \mathbf{N}(15, 66016, 15, 66016)$
	$X \sim N(24, 24)$ and $T \sim N(15.00010, 15.00010)$
	$X - Y \sim N(8.33984, 39.66016)$
	P(X > Y) = P(X - Y > 0) = P(X - Y > 0.5) cc
	= 0.8934 = 0.893(3sf)
11b	<i>p</i> > 0.6
(1)	$\Rightarrow \frac{2}{65}(40-d) > 0.6$
	$\Rightarrow 40 - d > 19.5$
	$\Rightarrow d < 20.5$
	Maximum distance of $d = 20$ metres.
11b	Let W denote the number of kicks that hit the net
(11)	$W \sim B(15, p)$
	$P(W \ge 2) = 0.9$
	$1 - P(W \le 1) = 0.9$
	$P(W \le 1) = 0.1$
	$(1-p)^{15} + 15p(1-p)^{14} = 0.1$
	$(1-p)^{14}(1+14p)-0.1=0$
	Using GC, p=0.23557
	$0.23557 - \frac{2}{2}(40 - r)$
	$0.23337 - \frac{1}{65}(40 - x)$
	$\Rightarrow x = 32.343975$
	$\Rightarrow x = 32 metres(nearest metres)$
11b (iii)	Let S be the number of kicks that hit into the net out of 100 kicks at a distance of 24 metres from the goalpost.
× ,	
	$S \sim B(100, 0.4923077)$
	$E(S) = 100 \times 0.4923077 = 49.231$
	$Var(S) = 100 \times 0.4923077 \times 0.5076923 = 24.9941$
	Since sample size is large (60 days), by CLT,
	$\bar{S} \sim N(49.231, \frac{24.9941}{2})$
	$5 \sim 10(49.231, -60)$
	Required prob = $P(\bar{S} - 50 < 1) = P(49 < \bar{S} < 51) = 0.637(3sf)$