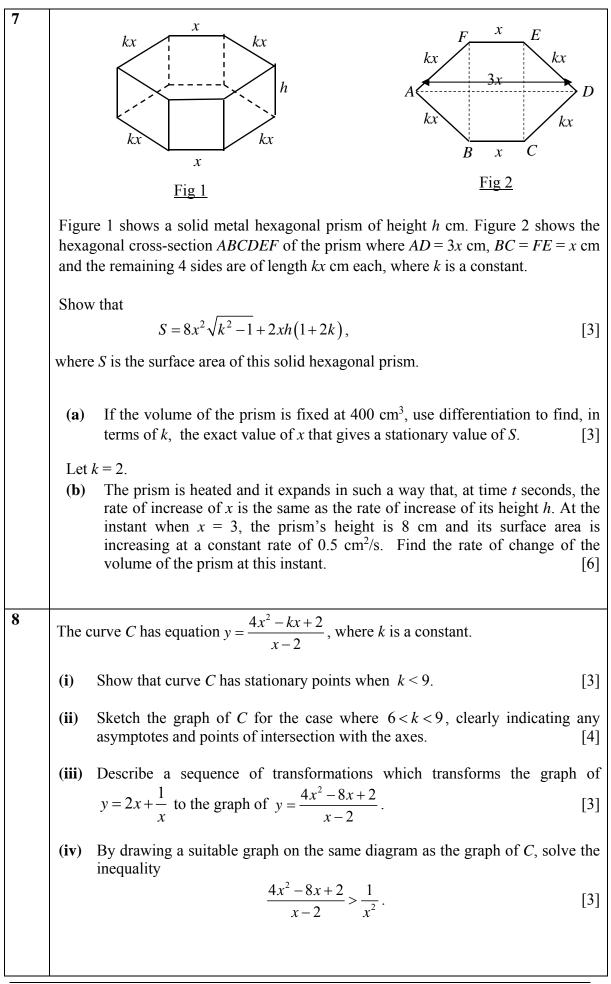
ANDERSON JUNIOR COLLEGE 2017 Preliminary Examination H2 Mathematics Paper 1 (9758/01)

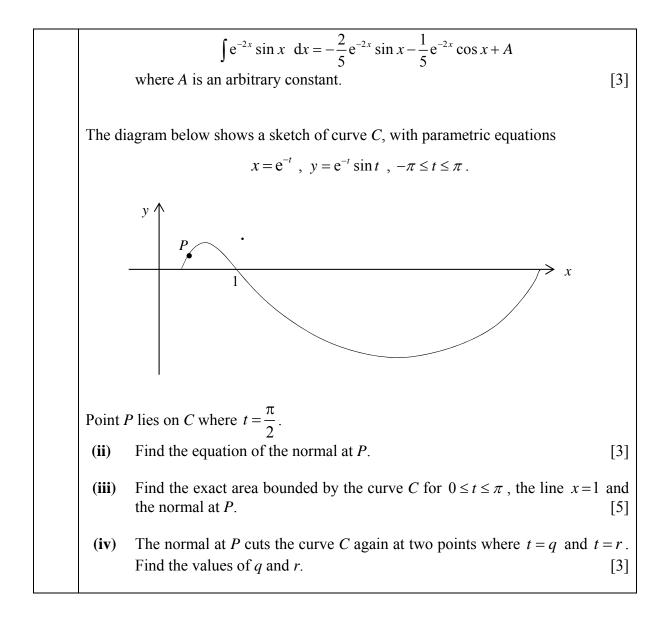
Duration: 3 hours

1 Mr Tan invested a total of \$25,000 in a structured deposit account, bonds and an estate fund. He invested \$7,000 more in bonds than in estate fund. The projected annual interest rates for structured deposit account, bonds and estate fund are 2%, 3% and 4.5% respectively. Money that is not drawn out at the end of the year will be re-invested for the following year. Mr Tan plans to draw out his money from all investments at the end of the second year and estimates that he will receive a total of \$26,300. Find the amount of money Mr Tan invested in each investment, giving your answer to the nearest dollar. [5] Show that the differential equation 2 $\frac{dy}{dx} + \frac{3xy}{1 - 3x^2} - x + 1 = 0$ may be reduced by means of the substitution $y = u\sqrt{1-3x^2}$ to $\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{x-1}{\sqrt{1-3x^2}} \, .$ Hence find the general solution for *y* in terms of *x*. [5] 3 D The diagram above shows a quadrilateral *ABCD*, where AB = 2, $BC = \sqrt{2}$, angle $ABC = \frac{\pi}{4} - \theta$ radians and angle $CAD = \theta$ radians. Show that $AC = \sqrt{6 - 4\cos\theta - 4\sin\theta}$ [2] Given that θ is small enough for θ^3 and higher powers of θ to be neglected, show that $AD \approx a + b\theta + c\theta^2$, where a, b and c are constants to be determined. [5]

1	
4	(a) Given that $\sum_{n=1}^{N} \frac{1}{4n^2 - 1} = \frac{1}{2} - \frac{1}{2(2N+1)}$, find $\sum_{n=1}^{2N} \frac{1}{4(n+1)^2 - 1}$.
	Deduce that $\sum_{n=1}^{2N} \frac{1}{(2n+3)^2}$ is less than $\frac{1}{6}$. [5]
	(b) The sum to <i>n</i> terms of a series is given by $S_n = n \ln 2 - \frac{n^2 - 1}{e}$.
	Find an expression for the n^{th} term of the series, in terms of n . Show that the terms of the series follow an arithmetic progression. [4]
5	A curve <i>C</i> has equation $y = f(x)$. The equation of the tangent to the curve <i>C</i> at the point where $x = 0$ is given by $2x - ay = 3$ where <i>a</i> is a positive constant.
	It is also given that $y = f(x)$ satisfies the equation $(1+2x)\frac{d^2y}{dx^2} + y\frac{dy}{dx} = 0$ and that
	the third term in the Maclaurin's expansion of $f(x)$ is $\frac{1}{2}x^2$.
	Find the value of <i>a</i> . Hence, find the Maclaurin's series for $f(x)$ in ascending powers of <i>x</i> , up to and including the term in x^3 . [7]
6	The diagram below shows the line <i>l</i> that passes through the origin and makes an
U	angle α with the positive real axis, where $0 < \alpha < \frac{\pi}{2}$.
	Point <i>P</i> represents the complex number z_1 where $0 < \arg z_1 < \alpha$ and length of <i>OP</i> is
	<i>r</i> units. Point <i>P</i> is reflected in line <i>l</i> to produce point <i>Q</i> , which represents the complex number z_2 .
	<i>y</i> ↑
	P
_	α
	Prove that arg $z_1 + \arg z_2 = 2\alpha$. [2]
	Deduce that $z_1 z_2 = r^2 (\cos 2\alpha + i \sin 2\alpha)$. [1]
	Let <i>R</i> be the point that represents the complex number $z_1 z_2$. Given that $\alpha = \frac{\pi}{4}$,
	write down the cartesian equation of the locus of <i>R</i> as z_1 varies. [2]
1	



9	The position vectors of A, B and C with respect to the origin O are a , b and c respectively. It is given that $\overrightarrow{AC} = 4\overrightarrow{CB}$ and $ \mathbf{a} + \mathbf{b} ^2 = \mathbf{a} ^2 + \mathbf{b} ^2$.
	(i) By considering $(a+b)$. $(a+b)$, show that a and b are perpendicular. [2]
	(ii) Find the length of the projection of \mathbf{c} on \mathbf{a} in terms of $ \mathbf{a} $. [3]
	(iii) Given that <i>F</i> is the foot of the perpendicular from <i>C</i> to <i>OA</i> and f denotes \overrightarrow{OF} , state the geometrical meaning of $ \mathbf{c} \times \mathbf{f} $. [1]
	(iv) Two points X and Y move along line segments OA and AB respectively such that
	$\overrightarrow{OX} = (\cos 3t)\mathbf{i} + (\sin 3t)\mathbf{j} + \frac{1}{2}\mathbf{k},$
	$\overrightarrow{OY} = (\sin t)\mathbf{i} + (\cos t)\mathbf{j} - 2\mathbf{k},$
	where t is a real parameter, $0 \le t \le 2\pi$. By expressing the scalar product of
	\overrightarrow{OX} and \overrightarrow{OY} in the form of $p\sin(qt) + r$ where <i>p</i> , <i>q</i> and <i>r</i> are real values to be determined, find the greatest value of the angle <i>XOY</i> . [5]
10	There are 25 toll stations, represented by T_1 , T_2 , T_3 ,, T_{25} along a 2000 km stretch of highway. T_1 is located at the start of the highway and T_2 is located <i>x</i> km from T_1 . Subsequently, the distance between two consecutive toll stations is 2 km more than the previous distance. Find the range of values <i>x</i> can take. [3]
	Use $x = 60$ for the rest of this question.
	Each toll station charges a fee based on the distance travelled from the previous toll station. The fee structure at each toll station is as follows: For the first 60 km, the fee per km will be 5 cents. For every additional 2 km, the fee per km will be 2% less than the previous fee per km.
	(i) Find, in terms of <i>n</i> , the amount of fees a driver will need to pay at T_n . [3]
	(ii) Find the total amount of fees a driver will need to pay, if he drives from T_1 to T_n . Leave your answer in terms of <i>n</i> . [4]
	More toll stations are built along the highway in the same manner, represented by T_{26} , T_{27} , T_{28} , beyond the 2000 km stretch.
	(iii) If a driver starts driving from T ₁ and only has \$200, at which toll station will he not have sufficient money for the fees? [2]
11	(i) Show by integration that



End of paper