
JURONG JUNIOR COLLEGE JC2 Preliminary Exam 2013

JURONG JUNIOR COLLEGE JC2 Preliminary Exam 2013

		H2 Physi	ics Paper 3 solutions	
Qn		Suggested se		Remarks
(2a)	position of possessed d Comments:	<u>2 masses</u> whereas Electric ue to the <u>relative position of 2</u>		ergy 1
	potential en		efinition of gravitational and ele as "work done per unit mas charge in moving…"	
(bi)	$dm/dt = \rho(dV) = 100$ = 1400 kg s ⁻¹ Comments:	0 x 1.4		1
		ates did not explain properly t	he product of 1000 and 1.4.	
(ii)		ge in GPE = (dm/dt)gh		1 for eqn
	= 1400 (9.81)(750)		1-sub
	= -10.3 MJ s Comments: Most candida negative sigr	ates forgot that the change o	f GPE was a loss and did not p	1 – end answer with negative sign
3(a)(i)	ΔU is the <u>inc</u> q is the <u>thern</u> w is the <u>work</u>	rease in internal energy of sys nal energy/heat supplied to sy <u>c done on</u> system lany candidates wrote ∆U as o	vstem	[1] with all underlined points
(a)(ii)		Solid which <i>expands</i> on melting	Solid which <i>contracts</i> on melting	[1] for every two
	ΔU	+ (3)	+/- (4)	correct signs
	q	+ (2)	+/- (2)	[3] for all correct
	W	- (1)	+ (1)	
	defini (2) Therr (3) Expan equili minim (4) Apply separ (wher energ For (3) ar	nsion implies intermolecular s brium intermolecular separation num), resulting in greater pote 1 st law of thermodynamics. C ration smaller than the equilibre potential energy is minimum by.	n. <u>to</u> the system for melting to occ eparation larger than the on (where potential energy is ential energy. Contraction implies intermolecula rium intermolecular separation n), resulting in greater potential remains constant since melting	ar

(b)(i)At constant temperature, the random kinetic energy of the gas molecules remains unchanged.[2] for correct reasoning and conclusionThe internal energy of its molecules energy of its molecules of an ideal only depends on the random K.E. Many of they also did not equate internal energy to temperature directly.[2] for correct reasoning and conclusion(b)(ii)The work done on internal energy of its molecules.Comment : Many candidates thought that temperature is unchanged since there is no heat exchange.[2] for correct reasoning and conclusion4aNewton's law of gravitation states that the gravitational force between 2 point masses is directly proportional to the product of their masses and inversely proportional to the square of their separation, R. i.e.1 for Newton's Law $F = \frac{GMm}{R^2}$ $g_M = F / m = \frac{GM}{m^2}$ Where g is defined as force per unit mass and m is a test1 for mentioning	02	H2 Physics Paper 3 solutions	Remarks
remains unchanged.The internal energy of the gas which is the sum of the random kinetic energy of its molecules remains unchanged.The part in bold must be reasoning and conclusionComment: Quite a number of candidates did not mention that internal energy of an ideal only depends on the random KE. Many of they also did not equate internal energy to temperature directly.The part in bold mentioned in either (b)(i) or either (b)(ii) or <b< th=""><th>Qn (b)(i)</th><th>At constant temperature, the random kinetic energy of the cas molecules</th><th></th></b<>	Qn (b)(i)	At constant temperature, the random kinetic energy of the cas molecules	
energy of its molecules remains unchanged.If a part in during the matrix of the part in our matrix interval energy of an ideal only depends on the random K.E. Many of they also idd not equate internal energy to temperature directly.If a part in our matrix interval energy of the interval (b(i)) or (b)(ii), else max(b)(ii)The work done on (compressing) the gas increases the random kinetic energy of its molecules.[2] for correct reasoning and conclusion(b)(iii)The work done on (compressing) the gas increases.[2] for correct reasoning and conclusionComment : Many candidates thought that temperature is unchanged since there is no heat exchange.1 for Newton's Law4aNewton's law of gravitation states that the gravitational force between 2 point masses is directly proportional to the product of their masses and inversely proportional to the square of their separation, <i>R</i> . i.e.1 for definition of g as force per un mass $g_M = F / m = \frac{GM}{R^2}$ Where g is defined as force per unit mass and m is a test mass1 for definition in g as force per un masscomments: Many students neglected to mention 'point masses' while quoting Newton's law of gravitation. The majority also did not distinguish between M and m (i.e. mention that m is a test mass or small mass).1 – sub 1 – answerbit $g = \frac{GM}{R^2} = \frac{(6.67 \times 10^{-11})(5.2 \times 10^{-9})}{(1.7 \times 10^{+1})^2} = 1.2 \times 10^{12} N kg^{-1}$ 1 – sub 1 – answerbitThe neutron star is assumed to be a point mass.1Comments: Generally well done. Other answers accepted include: star's radius is assumed to be constant, star is a perfect sphere, star has uniform density etc.1bit $g = Rw^2 = R \left(\frac{2\pi}{R} \right)^2 = (1.7 \times 10^{+1} \left(\frac{2\pi}{R} \right)^2 = 1.52 \times $	(0)(1)	remains <u>unchanged</u> .	reasoning and
Comment: Quite a number of candidates did not mention that internal energy of an ideal only depends on the random K.E. Many of they also did not equate internal energy to temperature directly.either (b)(i) or (b)(ii), else max 			
energy of its molecules.reasoning and conclusionThe internal energy of the gas increases.Comment : Many candidates thought that temperature is unchanged since there is no heat exchange. 4a Newton's law of gravitation states that the gravitational force between 2 point masses is directly proportional to the product of their masses and inversely proportional to the square of their separation, <i>R</i> . i.e.1 for Newton's Law $F = \frac{GMn}{R^2}$ 1 for definition of g as force per unit mass and m is a test mass.1 for mentioning m as a test mass or small mass). bi Comments: Many students neglected to mention "point masses" while quoting Newton's law of gravitation. The majority also did not distinguish between M and m (i.e. mention that m is a test mass or small mass).1 - sub 1 - answer bi $g = \frac{GM}{R^2} = \frac{(6.67 \times 10^{-11})(5.2 \times 10^{01})}{(1.7 \times 10^4)^2} = 1.2 \times 10^{12} \text{ N kg}^{-1}$ 1 - answer bii The neutron star is assumed to be a point mass.1 biii Comments: Generally well done. Other answers accepted include: star's radius is assumed to be constant, star is a perfect sphere, star has uniform density etc.1 - Sub biii $a = R\omega^2 = R\left(\frac{2\pi}{2}\right)^2 = (1.7 \times 10^4)\left(\frac{2\pi}{2}\right)^2 = 1.52 \times 10^7 \text{ m s}^2$ 1 - Sub		of an ideal only depends on the random K.E. Many of they also did not	either (b)(i) or (b)(ii), else max [3] of possible 4
Comment : Many candidates thought that temperature is unchanged since there is no heat exchange.1 for Newton's Law4aNewton's law of gravitation states that the gravitational force between 2 point masses is directly proportional to the product of their masses and inversely proportional to the square of their separation, R. i.e.1 for Newton's Law $F = \frac{GMm}{R^2}$ 1 for definition of g as force per unit 	(b)(ii)	energy of its molecules.	reasoning and
there is no heat exchange. 4a Newton's law of gravitation states that the gravitational force between 2 point masses is directly proportional to the product of their masses and inversely proportional to the square of their separation, <i>R</i> . i.e. $F = \frac{GMm}{R^2}$ 1 for Newton's Law $g_M = F / m = \frac{GM}{R^2}$ 1 for definition of g as force per unit mass1 for mentioning mass $g_M = F / m = \frac{GM}{R^2}$ Where g is defined as force per unit mass and m is a test mass.1 for mentioning m as a test massComments: Many students neglected to mention "point masses" while quoting Newton's law of gravitation. The majority also did not distinguish between M and m (i.e. mention that m is a test mass or small mass).1 - sub 1 - answerbi $g = \frac{GM}{R^2} = \frac{(6.67 \times 10^{-11})(5.2 \times 10^{30})}{(1.7 \times 10^4)^2} = 1.2 \times 10^{12} \text{ N kg}^{-1}$ 1 - answerbiiThe neutron star is assumed to be a point mass.1comments: Generally well done. Other answers accepted include: star's radius is assumed to be constant, star is a perfect sphere, star has uniform density etc.1biii $a = Rw^2 = R\left(\frac{2\pi}{2}\right)^2 = (1.7 \times 10^4)\left(\frac{2\pi}{2}\right)^2 = 1.52 \times 10^7 \text{ m s}^2$ 1- Sub		The <u>internal energy</u> of the gas <u>increases</u> .	
Newton's law of gravitation states that using utility indicational force between 2 point masses is directly proportional to the gravitation and/se between 2 point masses is directly proportional to the square of their separation, <i>R</i> . i.e. $F = \frac{GMm}{R^2}$ Law $g_M = F / m = \frac{GM}{R^2}$ Where g is defined as force per unit mass and m is a test mass.1 for definition of g as force per uni massComments: Many students neglected to mention "point masses" while quoting Newton's law of gravitation. The majority also did not distinguish between M and m (i.e. mention that m is a test mass or small mass).1 - sub 1 - answerbi g = $\frac{GM}{R^2} = \frac{(6.67 \times 10^{-11})(5.2 \times 10^{30})}{(1.7 \times 10^4)^2} = 1.2 \times 10^{12} \text{ N kg}^{-1}$ 1 - sub 1 - answerbii to square the denominator while substituting and hence got an incorrect answer.1bii to square the denominator while substituting and hence got an incorrect answer.1bii to square the denominator while substituting and hence got an incorrect answer.1bii to square the denominator while substituting and hence got an incorrect answer.1bii to square the denominator while substituting and hence got an incorrect answer.1bii to square the denominator while substituting and hence got an incorrect answer.1biii to assumed to be constant, star is a perfect sphere, star has uniform density etc.1biii a = $R \omega^2 = R \left(\frac{2\pi}{r} \right)^2 = (1.7 \times 10^4) \left(\frac{2\pi}{r} \right)^2 = 1.52 \times 10^7 \text{ m s}^2$ 1- Sub			
$g_{M} = F / m = \frac{GM}{R^{2}}$ Where <i>g</i> is defined as force per unit mass and m is a test mass $g_{M} = F / m = \frac{GM}{R^{2}}$ Where <i>g</i> is defined as force per unit mass and m is a test mass 1 for mentioning m as a test mass. Comments: Many students neglected to mention "point masses" while quoting Newton's law of gravitation. The majority also did not distinguish between M and m (i.e. mention that m is a test mass or small mass). bi $g = \frac{GM}{R^{2}} = \frac{(6.67 \times 10^{-11})(5.2 \times 10^{30})}{(1.7 \times 10^{4})^{2}} = 1.2 \times 10^{12} \text{ N kg}^{-1}$ 1 - sub 1 - answer comments: Generally well done except for a handful of students who forgot to square the denominator while substituting and hence got an incorrect answer. bii The neutron star is assumed to be a point mass. 1 comments: Generally well done. Other answers accepted include: star's radius is assumed to be constant, star is a perfect sphere, star has uniform density etc. biii $a = R \omega^{2} = R \left(\frac{2\pi}{r}\right)^{2} = (1.7 \times 10^{4}) \left(\frac{2\pi}{r}\right)^{2} = 1.52 \times 10^{7} \text{ m s}^{-2}$ 1 - Sub	4a	masses is directly proportional to the product of their masses and inversely	
mass.If as a test massComments: Many students neglected to mention "point masses" while quoting Newton's law of gravitation. The majority also did not distinguish between M and m (i.e. mention that m is a test mass or small mass).1 - sub 1 - sub 1 - answer bi $g = \frac{GM}{R^2} = \frac{(6.67 \text{ x } 10^{-11})(5.2 \text{ x } 10^{30})}{(1.7 \text{ x } 10^4)^2} = 1.2 \text{ x } 10^{12} \text{ N kg}^{-1}$ 1 - sub 1 - answer bii to square the denominator while substituting and hence got an incorrect answer.1 bii the neutron star is assumed to be a point mass.1 biii density etc.1 biii a = $R \omega^2 = R \left(\frac{2\pi}{2}\right)^2 = (1.7 \text{ x } 10^4) \left(\frac{2\pi}{2}\right)^2 = 1.52 \text{ x } 10^7 \text{ m s}^2$ 1- Sub		$F = \frac{GMm}{R^2}$	1 for definition of g as force per unit mass
quoting Newton's law of gravitation. The majority also did not distinguish between M and m (i.e. mention that m is a test mass or small mass).1bi $g = \frac{GM}{R^2} = \frac{(6.67 \times 10^{-11})(5.2 \times 10^{30})}{(1.7 \times 10^4)^2} = 1.2 \times 10^{12} \text{ N kg}^{-1}$ 1 - sub 1 - answerComments: Generally well done except for a handful of students who forgot to square the denominator while substituting and hence got an incorrect answer.1biiThe neutron star is assumed to be a point mass.1biiiComments: Generally well done. Other answers accepted include: star's radius is assumed to be constant, star is a perfect sphere, star has uniform density etc.1biiii $a = R\omega^2 = R \left(\frac{2\pi}{2}\right)^2 = (1.7 \times 10^4) \left(\frac{2\pi}{2}\right)^2 = 1.52 \times 10^7 \text{ m s}^{-2}$ 1- Sub		A	1 for mentioning m as a test mass
$g = \frac{GM}{R^2} = \frac{(6.67 \times 10^{-1})(5.2 \times 10^{-5})}{(1.7 \times 10^4)^2} = 1.2 \times 10^{12} \text{ N kg}^{-1}$ 1 - answer Comments: Generally well done except for a handful of students who forgot to square the denominator while substituting and hence got an incorrect answer. bii The neutron star is assumed to be a point mass. 1 Comments: Generally well done. Other answers accepted include: star's radius is assumed to be constant, star is a perfect sphere, star has uniform density etc. biii $a = R\omega^2 = R\left(\frac{2\pi}{2}\right)^2 = (1.7 \times 10^4)\left(\frac{2\pi}{2}\right)^2 = 1.52 \times 10^7 \text{ m s}^{-2}$ 1- Sub		quoting Newton's law of gravitation. The majority also did not distinguish	
to square the denominator while substituting and hence got an incorrect answer.1biiThe neutron star is assumed to be a point mass.1Comments: Generally well done. Other answers accepted include: star's radius is assumed to be constant, star is a perfect sphere, star has uniform density etc.1biii $a = R\omega^2 = R\left(\frac{2\pi}{2}\right)^2 = (1.7 \times 10^4)\left(\frac{2\pi}{2}\right)^2 = 1.52 \times 10^7 \text{ m s}^{-2}$ 1- Sub	bi	$g = \frac{GM}{R^2} = \frac{(6.67 \text{ x } 10^{-11})(5.2 \text{ x } 10^{30})}{(1.7 \text{ x } 10^4)^2} = 1.2 \text{ x } 10^{12} \text{ N kg}^{-1}$	
Definition of the field of the distance to be disponent mass.Comments: Generally well done. Other answers accepted include: star's radius is assumed to be constant, star is a perfect sphere, star has uniform density etc.biii $a = R\omega^2 = R\left(\frac{2\pi}{2}\right)^2 = (1.7 \text{ x } 10^4)\left(\frac{2\pi}{2}\right)^2 = 1.52 \text{ x } 10^7 \text{ m s}^{-2}$ 1- Sub		to square the denominator while substituting and hence got an incorrect	
radius is assumed to be constant, star is a perfect sphere, star has uniform density etc. biii $a = R\omega^2 = R\left(\frac{2\pi}{2}\right)^2 = (1.7 \text{ x } 10^4)\left(\frac{2\pi}{2}\right)^2 = 1.52 \text{ x } 10^7 \text{ m s}^{-2}$ 1- Sub	bii	The neutron star is assumed to be a point mass.	1
$a = R\omega^2 = R\left(\frac{2\pi}{2\pi}\right)^2 = (1.7 \text{ x } 10^4)\left(\frac{2\pi}{2\pi}\right)^2 = 1.52 \text{ x } 10^7 \text{ m s}^{-2}$ 1- Sub		Comments: Generally well done. Other answers accepted include: star's radius is assumed to be constant, star is a perfect sphere, star has uniform	
	biii	$a = R\omega^2 = R\left(\frac{2\pi}{T}\right)^2 = (1.7 \text{ x } 10^4)\left(\frac{2\pi}{0.21}\right)^2 = 1.52 \text{ x } 10^7 \text{ m s}^{-2}$	

Qn	H2 Physics Paper 3 solutions Suggested solution	Remarks
	Comments: Generally well done except for a handful of students who forgot	
	the equation for centripetal acceleration.	
biv	On the surface of the star, the gravitational field strength is much greater	1 – both points must be
	(approximately 10 ⁵ times) than the centripetal acceleration of the particle. Hence the <u>gravitational force on the particle is sufficient to provide the</u>	mentioned.
	<u>centripetal force to maintain the particle in circular orbit on the surface of the</u>	
	star.	
		1 – correct
	This is why a particle will not leave the surface of the star.	conclusion only with correct
		explanation
	Comments: Most students were able to mention the fact that the centripetal	
	acceleration was smaller than the gravitational field strength and hence	
	particles will not leave the surface of the star. However, very few mentioned	
	the crucial detail that because of this, the gravitational force is sufficient to	
	provide the centripetal force to keep the particles in orbit (hence preventing	
	them from flying off).	
	Quite a few misread the question to mean that the particles <u>will leave</u> the surface of the star and thought they were being asked if this was due to the	
	high speed of rotation of the star or not.	
5 (ai)	Resistivity is the proportionality constant relating the resistance of a circuit	1 mark
	component to its length and cross-sectional area.	
	It is a property of the material and is dependent on temperature.	1 mark
	Comment : Most candidates did not realize that resistivity is a constant of	
	proportionality (as stated above), but tried to state that resistivity is	
	proportional to the cross-sectional area, and inversely proportional to the	
	length. Students should realize that resistivity, being a property of a material,	
	is independent of the dimensions of the sample/resistor. Many gave incorrect answers such as "resistivity is the resistance per unit	
	length", or "measure of the ability to conduct electrical current", which is	
	"conductivity" not "resistivity". Students should also differentiate the word	
/	"material" from "sample", "resistor" or "conductor".	A
(ii)	$R = \frac{\rho I}{A} = \frac{\left(1.50 \times 10^{-6}\right)\left(1.2\right)}{2.83 \times 10^{-9}} = 636\Omega$	Ans: 1 mark
(bi)	p.d. across 1.2 m of nichrome wire $=\frac{636}{636+500}(18)=10.1V$	Working:
	636 + 500	1 mark Ans:
	p.d. across 0.050 m of nichrome wire $=\frac{0.050}{1.2}(10.08)=0.421V$	1 mark
	Comment : A common error is to calculate : $V_c = \frac{0.050}{1.2} (18V) = 0.75V$.	
	Another error is to use the potential ratio method, but with an incorrect	
	denominator. $V_{\rm c} = = \frac{26.5\Omega}{500 + 26.5} (18V) = 0.906V$.	
L		

•	H2 Physics Paper 3 solutions		
Qn	Suggested solution	Remarks	
(ii)	The resistance in the driver circuit is $636 \Omega + 500 \Omega = 1136 \Omega$ whereas the internal resistance of the driver cell is usually much smaller than 1136 Ω , the assumption is valid.	1 mark	
	Comments : Students often stated that internal resistance is small, without making comparison to the external resistance. Students should be reminded <u>not</u> to use the word "negligible" or the synonym		
	"insignificant" when answering the question (e.g. the internal resistance is negligible compared to the external resistances") since the question asked why internal resistance was assumed to be "negligible".		
(ci)	$R = \frac{\rho I}{A} = \frac{\left(1.50 \times 10^{-6}\right)\left(1.2\right)}{\left(5\right)\left(2.83 \times 10^{-9}\right)} = 127 = 130 \ \Omega$	Sub: 1 mark	
(ii)	p.d. across 1.2 m of nichrome wire $=\frac{130}{130+500}(18)=3.71$ V	Ans: 1 mark	
	Comments : Students are advised to use the value of 130 Ω rather than 127 Ω in the calculation, since the value 130 Ω was asked to be shown in part (i) as they would not benefit from e.c.f. if they used other values except 130 Ω from part (i).		
	A significant number of students used $V = IR = (0.036)(130)$, the value of 0.036 A being the value of current from (b)(i). This indicates an incorrect understanding of circuits as the current has now changed when a new resistance is introduced into the circuit in part (c).		
(iii)	p.d. across 0.10 m of nichrome wire $=\frac{3.71}{12}=0.309$ V	Working: 1 mark Ans:	
	Current $= \frac{0.309}{6.0} = \frac{0.421}{6.0 + r} \Rightarrow r = 2.17 \Omega$ Comment : Some candidates calculated the p.d. across the 0.10 m nichrome wire correctly (0.309 V), but thought this was the p.d. across internal resistance. Clearly this should be the p.d. across the 6 Ω resistor.	1 mark	
6(a)(i)	A <i>progressive wave</i> is a wave in which the <u>waveform advances</u> and there is <u>a</u> transfer of energy along the direction of propagation of the wave.	[1] [1]	
	Comments: Quite poorly done. Many students gave the general definition of a wave instead. Those who tried to explain progressive waves were not able to state the required keywords.		
(ii)	Diffraction is the <u>spreading of waves through an aperture or round an</u> <u>obstacle</u> .	[1] [1]	
	It is <u>observable when the width of the aperture is of the same order of</u> magnitude as the wavelength of the waves.		
	Comments: Most students were able to obtain the first mark but neglected to mention when diffraction will be observable.		
(b)(i)1	From Fig. 6.2, Period of the waves = $2.5 \times 10^{-10} / 3 = 8.3 \times 10^{-11} s$	[1] - ans	

On	H2 Physics Paper 3 solutions Suggested solution Remarks		
Qn	Suggested solution	Remarks	
	Comments: Many students were not able to obtain the correct value of the period of the waves. Of those who did, a few forgot to consider the power of the x-axis values (10^{-10} s)		
(i)2.	By observing the two waveforms at for example, time t = 0 s, it is apparent that the waveforms are out of phase by a quarter of a period. Hence, phase difference = $(1/4)(2\pi) = \pi/2$ rad	[1] – ans (also accept 3π/2 rad)	
	Comments: Many students were not able to obtain the correct phase difference. A spectrum of answers was obtained (0, π , 2π etc).		
(i)3.	Recall that Intensity ∞ Amplitude ² Hence, ratio of intensities = $3^2/1^2 = 9$	[1] – subst [1] – ans	
	Comments: Generally well done. A handful forgot to square the ratio of the amplitudes or inverted the ratio.		
(ii)	Using $\mathbf{v} = \mathbf{f} \mathbf{\lambda} => \mathbf{v} = \mathbf{\lambda}/T$ $\mathbf{\lambda} = \mathbf{3.00 \ x \ 10^8} \ (\mathbf{8.3 \ x \ 10^{-11}}) = 2.5 \ x \ 10^{-2} \ m = 2.5 \ cm \ (shown)$	[1]	
	 [1] – for knowing speed of microwaves is 3.00 x 10⁸ m s⁻¹ [1] – subst (practise e.c.f. from part (i)1.) 	[1]	
	Comments: Generally well done. Most students were able to state the correct speed of microwaves.		
(iii)	The maximum intensity happens when the waves from S1 and S2 are in phase at that point. At O, both waves from S1 and S2 are in phase (hence maxima). Moving 5 cm away from O to P, both waves are now $\frac{\pi}{2}$ rad out of phase. The next time they are in phase is when the phase difference = 2π rad. Hence approximate distance from O for maxima = 5cm x 4 = 20 cm. \rightarrow Approximate distance to move from P = 20-5 = 15 cm.	[1] – expl [1] – expl [1] –ans (also accept 1.7 cm)	
	Comments: Not well-attempted. Many students erroneously stated that constructive interference will take place when there is a phase difference of π radians.		
(iv)	Approximating using the double-slit equation, $ax = \lambda D$ a = (2.5 x 10 ⁻²)(3.2)/(20 x 10 ⁻²) = 0.4 m	[1] – subst (practise e.c.f. for the value of fringe separation)	
		[1] - answer	

^-	H2 Physics Paper 3 solutions		
Qn	Suggested solution	Remarks	
	Comments: Not well-attempted even though most students were able to recall the correct equation. Many left section (iii) blank and hence did not		
	have a value for fringe separation which they could use for substitution.		
(c)(i)1	Distance between 2 nodes = $\lambda/2$	[1] – ans	
(i)2.	Phase angle between adjacent antinodes = π rad	[1] – ans	
	Comments: Many students were able to answer parts (c)(i)1 and 2 correctly.		
(ii)	Stationary waves are formed by the <u>superposition of 2 progressive waves (of</u> <u>the same type)</u> , of equal magnitude and frequency, <u>traveling in opposite</u> <u>directions</u> .	[1] [1]	
		[1]	
	For a stationary wave, the product $f\lambda$ gives the speed of the underlying progressive waves.		
	Because the two waves travel in opposite directions at the same speed, therefore there will be no net transfer of energy for the resultant stationary wave.		
	 [1] superposition of 2 progressive waves of the same type [1] traveling in opposite directions [1] relating product fλ to speed of the component progressive waves 		
	Comments: Many students neglected to mention that the waves must be		
	progressive. A few also did not mention opposite directions of travel or simply		
	stated that the directions must be "different" ("different" is not specific		
	enough). Only a handful of students were able to deduce that the product $f\lambda$		
	was the speed of the underlying progressive waves.		
7(a)i)	Two times at which the magnet is stationary are t_2 and t_4 . (t_6 , t_8)	1 mark	
(a)ii)	Two times at which the magnet is moving upwards are t_1 and t_5 . (t_9)	1 mark	
(a)iii)	Two times at which the magnet is moving downwards are t_3 and t_7 .	1 mark	
(b)i)	e.m.f. 0 t_1 t_2 t_0 t_4 t_5 t_0 t_8 t_9 t	1 mark for sinusoidal graph (can also be mirror image about <i>t</i> -axis) [1] correct max. emf, [1] zero e.m.f at the correct time	

-	H2 Physics Paper 3 solutions	
Qn	Suggested solution	Remarks
(b)ii)	According to <u>Faraday's law</u> , the induced e.m.f. is proportional to <u>the rate of</u> <u>change of the magnetic flux linkage</u> in the coil, which is <u>proportional to the</u> <u>magnet's velocity</u> .	1 mark
	When velocity is zero (t=0, t ₂ , t ₄), induced e.m.f. is zero	1 mark
	When velocity is maximum (t_1 , t_3 , t_5), induced e.m.f. is maximum.	1 mark
	 <u>The motion of the magnet is simple harmonic</u>, <u>so the variation of the</u> <u>magnet's velocity with time is also sinusoidal</u>. The variation of the induced e.m.f. with time will therefore be sinusoidal. 	1 mark (for either 1, 2 or 3)
	 Since the terminal is connected to a c.r.o of <u>infinite resistance</u>, <u>there is no</u> induced current in the coil to produce any opposing effect as predicted by <u>Lenz's law</u>, thus the <u>amplitude remains constant</u>. 	
	3. Explanation of why the e.m.f. should change direction.	
	Comments : Many did not explain why the shape of the graph should be sinusoidal. Most included Lenz's law, stating that "the direction of induced current", failing to notice that in this question, the C.R.O. has <u>infinite</u> resistance, and hence, no induced current can flow, thus no opposing effect is predicted according to Lenz's law.	
(c)i)	e.m.f.	1 marks for decreasing amplitude
	$0 1_1 1_2 1_9 1_4 1_5 1_6 1_9 1_8 1_9 1$	1 mark for same or slightly larger period compared to the previous graph.
	Comments:	Allow e.c.f. if the
	Few candidates sketched a damped oscillation and often these showed erratic variations in amplitude and/or large variations in the period of oscillation. In many cases, a sketch was drawn which was similar to that in (b) (i) but of a smaller constant amplitude.	original graph shows oscillatory motion.

	H2 Physics Paper 3 solutions		
Qn	Suggested solution	Remarks	
(c)ii)	In the first graph, <u>no electrical energy is generated in the coil, hence the total</u> <u>mechanical energy</u> in the spring system <u>remains constant</u> . (constant amplitude)	1 mark	
	With a resistor connected across the points, <u>electrical energy is generated in</u> <u>the coil</u> ,	1 mark	
	and is converted from the loss of the <u>mechanical energy</u> (Kinetic/ potential energy) in the spring system . Thus, the amplitude of oscillation reduces over time.	1 mark	
	Comments: Most students answered in terms of opposing effect, without reference to energy considerations. Most candidates stated that thermal energy would be dissipated in the resistor but few explained the <u>essential</u> <u>difference between the two cases</u> , i.e. that in the second case, there is a current through the resistor which dissipates-energy as thermal energy at the expense of the energy of the magnet.		
	Students should avoid answers such as "Energy is needed to go against the resistive forces" as the comparison is between energy and force, which leads to poor descriptions of energy changes in the process.		
(d)	For a given power (P = VI), using a high voltage implies that the current will	1 mark	
	be low. Since the heating effect/ power loss (I ² R) in transmission cables is	1 mark	
	proportional to the square of current, energy loss during the transmission will be minimised by using a low current.	1 mark	
	Comment : Some stated " $P = \frac{V^2}{R}$, thus larger V imply larger P supplied, and		
	makes the resistance negligible. This increases efficiency". This contradicts the conservation of energy, since power supplied is constant, and the stepping up of the voltage <i>V</i> leads to a lower current <i>I</i> .		
(e)	For many reasons, including safety, generation and consumption of electric power occur at relatively low voltages, so it is essential to be able to change the voltage. During the transmission of electrical energy, we may <u>want to step up or down the voltage</u> due to various reasons such as minimizing energy loss, safety and electrical device power consumption. <u>Transformers can do this efficiently, but they can only operate on alternating current</u> .	1 mark for each underlined point	
	Comments : Many students did not clearly show in their answers the advantages of using A.C. Many thought that A.C. will allow e.m.f. to continuously be induced as an advantage, not realizing that A.C. is an induced e.m.f. phenomena.		
8(a)(i)	$\Delta E = (-13.6 - (-0.378) = 13.222 \text{ eV}$	[1] for correct calculation of ΔE .	
	$\Rightarrow \frac{1}{2} mv^2 = 13.222 \times 1.6 \times 10^{-16}$	[1]for substitution [1] for answer	
	$\Rightarrow \frac{1}{2} (9.11 \times 10^{-31}) v^2 = 13.222 \times 1.6 \times 10^{-16} \Rightarrow v = 6.81 \times 10^7 \text{ ms}^{-1}$		

•	H2 Physics Paper 3 solutions		
Qn	Suggested solution	Remarks	
(ii)	Red Violet	[1] for 4 linesDrawn to scale[1] for correctposition for redand violet.	
	Comments: Only few candidates managed to get this correct.		
(b)(i)	A line of best fit is drawn Since $E_k = hf - \phi$ Gradient of E_k vs f graph is h $h = \frac{(1.2 - 0) \times 1.6 \times 10^{-19}}{(7.4 - 4.5) \times 10^{14}} \approx 6.6 \times 10^{-34} \text{ Js}$	[1] for correct method	
	$(7.4-4.5) \times 10^{14}$ Comments: Some candidates calculated gradient without drawing a best-fit line. Hence they failed to check if the points they used lied on this line. Some candidates failed to select points that are more than 50% of the length of the line apart.	[1] for final answer	
(ii)	$\phi = hf = (6.6 \times 10^{-34})(4.5 \times 10^{14}) = 2.97 \times 10^{-19} \mathrm{J}$	[1] for answer Also accept 2.98 x10 ⁻¹⁹ based on 6.63 x10 ⁻³⁴	
(iii)	Graph starts from a minimum frequency. Only radiation of frequency <u>above a minimum (threshold) frequency</u> can cause photoemission.	[1]	
	Support particulate nature: Since the energy of a photon is expressed as hf , hence the minimum photon energy required to liberate an electron from its surface must be hf_0 . Contradict wave nature:	[1]	
	Since the energy carried by the wave depends only on the wave amplitude ($I \propto f^2 A^2$), emission of photoelectrons from the metal surface should occur at any frequency as long as the amplitude is large enough. This does not happen	[1]	
	Comment: Many candidates failed to understand that they were supposed to only identify features only from the graph to explain particulate and wave nature.		
(c)(i)	E = hf = $h\frac{c}{\lambda} \Rightarrow (1.2 \times 10^6 \times 1.6 \times 10^{-19}) = (6.63 \times 10^{-34}) \frac{3 \times 10^8}{\lambda} \Rightarrow \lambda = 1.04 \times 10^{-12} \text{ m}$	[1] for correct substitution	
(ii)	$p = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{1.04 \times 10^{-12}} = 6.38 \times 10^{-22} \text{ kg m s}^{-1}$	[1] for correct answer	
(iii)	There is no resultant external force on the system during the radioactive	[1]	
	decay, by <u>Newton's 2nd law, there will be no change of momentum with time</u> and hence momentum is conserved.	[1]	

Qn	Suggested solution	Remarks
(iv)	$\mathbf{p}_{i} = \mathbf{p}_{f}$	[1] for substitution
	$0 = m_{Ni} v_f + p_{photon}$	[1] for answer
	$0 = (9.95 \text{ x } 10^{-26}) v_f + 6.38 \times 10^{-22}$	
	$v_{\rm f} = 6412 \approx 6410 {\rm m s^{-1}}$	
(v)	Photons can be <u>absorbed or reflected from the metal surface and hence they</u> <u>experience a change of momentum with time</u> , according to Newton's 2 nd law of motion, there is a <u>force acting on these photons</u> .	[1]
	By Newton's 3 rd law of motion, there will be <u>an equal and opposite force by</u> the photons on the metal surface.	[1]
	Force per unit area is pressure, so the incident photons would exert a pressure on the surface, known as radiation pressure.	[1]