

PHYSICS

MARK SCHEME

8867

June/July 2020

Paper 1 Longer Structured Questions

Qns	Answer	Marks
1(a)	Consider vertical motion, taking downwards as positive	
	$v^2 = u^2 + 2as$	
	$v_{\text{vertical}} = \sqrt{2as}$	
	$=\sqrt{2(9.81)(80)}$	01
	$\left[= 40 \text{ m s}^{-1} (39.618 \text{ m s}^{-1}) \right]$	C1 (vertical
		velocity value)
	$v_{\text{horizontal}} = 67 \text{ m s}^{-1}$	
	$\theta \qquad tan \theta = \frac{V_{\text{vertical}}}{V_{\text{becircutal}}}$	
	$\theta = \tan^{-1} \left(\frac{\frac{V_{\text{vertical}}}{V_{\text{torizontal}}} \right)$	
	$V_{\text{vertical}} = 39.618 \text{ m s}^{-1} = 30.6^{\circ}$	
	direction:	
	30.6° below the horizontal to the left OR	
	69.4° from the normal/vertical to the left	A1
	speed:	(direction)
	$V^2 = V_{\text{horizontal}}^2 + V_{\text{vertical}}^2$	
	$v = \sqrt{v_{\text{horizontal}}^2 + v_{\text{vertical}}^2}$	
	$= \sqrt{67^2 + 2(9.81)(80)}$	
	-77.8 m s^{-1}	A1
	- 77.0 11 3	
	(accept method by PCE)	
1(b)	both start from parachutist horizontally, Q same shape but less range:	A1
	P	

Qns	Answer	Marks
1(c)(i)	air resistive force is equal and opposite to weight of parachutist	A1
	[accept if free body diagram is clear, labelled and correct]	(magnitude
4(-)(::)	[0 if velocity appears as a vector on free body diagram]	and direction
1(C)(II)	loss in GPE is w.d. against force due to air resistance	B1
	converted into heat	
	KE remains same	
1(c)(iii)	By N2L,	
	$F = \frac{dp}{dp}$	
	dt	
	$F_{\text{run}} \approx \frac{\Delta p}{\mu} = \frac{p_{\text{final}} - p_{\text{initial}}}{\rho_{\text{final}}} \left(= \frac{0 - 574}{\rho_{\text{final}}} \right) (\text{ or } a = 28 \text{ m s}^{-2})$	C1
	$\Delta t \Delta t \Delta t \Delta t \int dt dt$	(terminal
	$-\frac{m(v_{\text{final}} - v_{\text{initial}})}{m(v_{\text{final}} - v_{\text{initial}})}$	momentum)
	$-\Delta t$	
	$ _{\mathbf{F}} _{-} (82)(0-7) $	
	$ \mathcal{F}_{avg} = \overline{0.25} $	
	= 2296 N (accept 2300 N)	A1
2(a)	resultant force in any direction is zero	B1
	resultant moment about any point is zero	B1
2(b)(i)	(by Principle of Moments)	
	take moment about hinge	
	sum of clockwise moments = sum of anticlockwise moments	M1
	$T_{\rm A}(15) = (700 \sin 40^{\circ})(5)$	M1
	$\tau = \frac{(700 \sin 40^\circ)(5)}{150 N} = 150 N$ (shown)	
	15	AU

Qns	Answer	Marks
2(b)(ii)	system is in equilibrium so resultant force in any direction is zero	
	horizontally:	
	$(700 \sin 40^\circ) = T_A + F_{x}$	
	$F = (700 \cos 40^{\circ}) - T.$	
	$=(700 \cos 40^{\circ}) - 150$	
	$\begin{bmatrix} -300 \text{ N} \text{ to the right} \end{bmatrix}$	C1
		(300N, right)
	vertically:	(2536N, up)
	$(700\cos 40^\circ) + W = F_y$	(· · · · · · · · · · · · · · · · · · ·
	$F_{y} = (700 \cos 40^{\circ}) + 2000$	
	[= 2536 N vertically upwards]	
	$F^2 = F_x^2 + F_y^2$	
	$F \downarrow F \downarrow$	
	θ = 2550 N	۸1
	F_x F_y	(2550 N)
	$\tan\theta = \frac{\gamma}{F_{\gamma}}$	
	(F_{ν})	
	$\theta = \tan^{-1}\left(\frac{\gamma}{F_x}\right)$	
	= 83.3° to the horizontal	A1 (92.2°)
		(00.0)
2(c)	Let T be new tension along half the wire $2T \sin 1.5^\circ - 10$	C1
	10	(eqn)
	$T = \frac{10}{2 \sin 1.5^{\circ}}$	
	= 191 N	A1

Qns	Answer	Marks
3(a)(i)	same direction as Earth's rotation about its own axis so satellite begins launch with some speed in correct direction	M1
	satellite already has some kinetic energy so less fuel needed to raise the gravitational potential energy	A1 (energy)
3(a)(ii)	gravitational force provides centripetal force	M1
	$\frac{GMm}{r^2} = mr\omega^2$	
	$GM = r^3 \omega^2$	
	$r = \sqrt[3]{\frac{GM}{\omega^2}} = \sqrt[3]{\frac{GM}{\left(\frac{2\pi}{T}\right)^2}}$	
	$= \sqrt[3]{\frac{(6.67 \times 10^{-11})(6.0 \times 10^{24})}{(27 - 10^{24})^2}}$	
	$\left(\frac{2\pi}{24\times60\times60}\right)$	
	$\begin{bmatrix} = 4.23 \times 10^7 \text{ m} & (4.2298 \times 10^7 \text{ m}) \end{bmatrix}$	C1 (<i>r</i> value)
	$h = r - R_{\rm E} = r - 6400 \times 10^3$	A0
2/h)/i)	$= 3.59 \times 10^7 \text{ m}$	
3(D)(I)	$E_{\text{total}} = E_{\text{K}} + E_{\text{P}}$	M1 (KE)
	$=\frac{1}{2}mv^{2} + \left(-\frac{GMm}{r}\right) = \frac{1}{2}r\left(\frac{mv^{2}}{r}\right) + \left(-\frac{GMm}{r}\right)$	
	$=\frac{1}{2}r\left(\frac{GMm}{r^{2}}\right)+\left(-\frac{GMm}{r}\right)=\left(\frac{GMm}{2r}\right)+\left(-\frac{GMm}{r}\right)$	A1 (Summation)
	$=-\frac{GMm}{2r}$	
3(b)(ii)	GMm	
	$\frac{2r}{2r}$	
	$= -\frac{(6.67 \times 10^{-11})(6.0 \times 10^{24})(1000)}{(1000)}$	
	$2(4.2298 \times 10^2)$	۸1
	$=-4.73 \times 10^9 \text{ J}$	AI
3(b)(III)	w.d. against drag so total energy decreases	B1
	GPE decrease so satellite lowers in height	•••
	KE increase so linear speed increase \int	M1
	satellite spirals towards Earth with increasing speed	A1
	Note: see topical compilation (gravitational field) page 13 to understand how the change in radius affects the various energies	
4(a)	magnetic force on particle is always normal to direction of motion so path is arc of a circle in magnetic field	B1
	after leaving field, Newton's first law, no net force on particle so path is straight line after leaving field	B1

Qns	Answer	Marks
4(b)(i)	momentum/speed decreasing	B1
	so the radius of circular motion ($r = mv / Bq$) is becoming smaller	B1
4(b)(ii)1.	Spirals are in opposite directions so oppositely charged	B1
4(b)(ii)2.	equal initial radius so equal initial speeds	B1
4(c)	$F = BILsin\theta$	C1
	$F = 0.4 \times 6 \times 0.14 \sin 60^{\circ}$	
	<i>F</i> = 0.29 N	A1
5(a)	region of space in which	
	a force acts on a stationary charge	B1
5(b)	+ + + + + + + + +	B1 arrow directions B1 normal to surfaces B1 symmetry above and below sphere
5(c)(i)	as electron moves right towards -50V plate, kinetic energy decreases as electric potential energy increases at closest distance of approach from -50 V plate, kinetic energy is	B1 B1
	minimum while electric potential energy is maximum as electron moves left towards + 50 V plate, kinetic energy increases as electric potential energy decreases	B1

5(C)(ii)	E field strength is uniform between charged parallel plates	M0 (kinomotioo)
		(KITETTALICS)
	$F = qE = m_{e}a_{\text{horizontal}}$	
	$g = g \Delta V$	
	$a_{\text{horizontal}} = \frac{r}{m_e} E = \frac{r}{m_e} \frac{\Delta x}{\Delta x}$	
	$= \left(\frac{1.6 \times 10^{-19}}{9.11 \times 10^{-31}}\right) \left(\frac{50 - (-50)}{2.0 \times 10^{-3}}\right) = 8.7816 \times 10^{15} \text{ m s}^{-2}$	C1
	at closest distance, $v_{\text{horizontal}} = 0$	
	$v^2 = u^2 + 2as = (v \sin 45^\circ)^2 + 2a_{\text{borizontal}}x_{\text{fr centre}}$	
	$x = 1.0 \times 10^{-3} - x = -1.0 \times 10^{-3} - (v \sin 45^{\circ})^{2} $	C1 (substitute
	$x = 1.0 \times 10^{\circ}$ $a_{\text{fr centre}} = 1.0 \times 10^{\circ}$ $2a_{\text{horizontal}}$	$0^2 = u^2 + 2as$
	$= 1.0 \times 10^{-3} - \left \frac{\left(\left(5.6 \times 10^6 \right) \sin(45^\circ) \right)^2}{2 \left(\frac{1.6 \times 10^{-19}}{2 \cos^2 1} \right) \left(\frac{50 - (-50)}{2 \cos^2 1} \right)} \right $	
	$ (9.11 \times 10^{-3}) / (2.0 \times 10^{-3}) $ = 1 1 × 10 ⁻⁴ m	A1 (need units)
	OR	
	By conserving energy, consider change in potential from centre of	
	plates,	
	1 = 2	
	$\frac{1}{2}m(v\sin\theta)^2 = q\Delta V_{\text{closest}}$	
	$m(y \sin \theta)^2$	
	$\Delta V_{\text{closest}} = \frac{m(v \text{ close})}{2q}$	
	$\left(\left(\left$	
	$= \frac{(9.11 \times 10^{-3^{\circ}})((5.6 \times 10^{\circ}) \sin(45^{\circ}))}{44.64}$	
	$2(1.6 \times 10^{-19})$	C1
	E field strength is uniform between charged parallel plates:	$(\Delta V \text{ value})$
	ΔV 50 - (-50) $\Delta V_{\text{closest}}$	
	$\mathcal{L} = \frac{1}{\Delta x} = \frac{1}{2.0 \times 10^{-3}} = \frac{1}{x_{\text{fr centre}}}$	
	$\Delta V_{\text{closest}}(2.0 \times 10^{-3})$	
	$X_{\text{fr centre}} = \frac{1000 \text{ coses}(100)}{100}$	
	$m(y \sin \theta)^2 ((2.0 \times 10^{-3}))$	
	$=\frac{m(v \sin v)}{2q}\left(\frac{(-v + v - v)}{100}\right)$	
	$((9.11 \times 10^{-31})((5.6 \times 10^6) \sin(45^\circ))^2)((2.0 \times 10^{-3}))$	
	$= \left \frac{\frac{(1-1)(1-1)}{2(1-1)}}{2(1-1)(1-1)} \right \left \frac{\frac{(1-1)(1-1)}{2(1-1)}}{100} \right $	
		C1
	$= 8.928 \times 10^{-4}$ m	(X from
	$x = (1.0 \times 10^{-3})$ x	
	= 1.1×10 m	(need units)

Qns	Answer				Marks	
6(a)(ii)	upthrust due to air negligible compared to gravitational force/weight					
	because dens	ity of air negli	gible to density	y of oil at same	e temperature∫	B1
6(b)	ΔV	Т	<i>W</i> / 10 ⁻¹⁴ N	Q / 10 ⁻¹⁹ C	N	B1
	770	11.2	2.9	1.66	1	(both <i>W</i> ∕s)
	230	10.0	3.4	6.53	4	B1
	1030	9.4	3.7	1.59	1	(both Q's)
	470	7.6	5.2	4.89	3	
	820	6.9	5.9	3.18	2	B2
	395	6.2	7.0	7.83	5	(each N)
6(c)	$ \langle \mathbf{e} \rangle = \frac{\sum \mathbf{Q}}{\sum N} $ = $\frac{(1.66 + 6.53 + 1.59 + 4.89 + 3.18 + 7.83) \times 10^{-19}}{1 + 4 + 1 + 3 + 2 + 5} $ = $1.61 \times 10^{-19} \text{ C} (\text{accept } 1.605 \times 10^{-19} \text{ C}) $				M1 (substitution) A1	
6(d)(i)	$T = 8, W = 4.8 \times 10^{-14}$					
	$lg (4.8 \times 10^{-14}) = -13.319$				A1	
	(do not accept -13.3 because numbers before d.p. insignificant)					

Qns	Answer	Marks
6(d)(ii)	0.6 0.8 1.0 1.2 1.4	B1
(iii)		(plot, no ecf)
(IV)		D1
		BI (BFL)
	-13.2	
	-13.6	
	-13.8	
	1. 36, -13.98	
	-14.0 (iv)	
	$VV = a T^{-1}$	
	$\lg W = \lg a + b \lg l$	B1
		read-off's to
	$\Delta y = -13.04 - (-13.98)$	half so
	$dx = \frac{1}{\Delta x} = \frac{1}{0.7 - 1.36}$	
	= -1.42	A1
	(accept [-1.5, -1.35])	(gradient
		within range)
	1	
	$\rho \propto \frac{1}{a^2}$	
	a is lower so y-intercept is lower	B1
	new sketch is parallel-to and lower than original	(0 if no (iv)
7(a)(i)	magnitude of the momentum of the cart before and after the collision is	B1
, (a)(i)	the same	
	kinetic energy is constant	B1
7(a)(ii)	Change in momentum = 0.3	
	$F_{avg} = \frac{\Delta mv}{\Delta t}$	C1
	$= 0.3 / 10 \times 10^{-3}$	
	= 30 N	A1

Qns	Answer	Marks
7(a)(iii)	<i>F</i> / N	B1
	↑	(Correct
		shape and
		ume)
		B1
	5 10 15 20 25 <i>t</i> / ms	(Negative)
7(a)(iv)	1. Time of contact will increase	B1
	2. Magnitude of maximum force will decrease	B1
7(b)(i)	Mass M hits the floor	B1
7(b)(ii)	The cart experiences a (constant) deceleration after t = 0.80 s	B1
7(b)(iii)	acceleration = 1.8 / 0.8	C1
	$= 2.25 \text{ ms}^{-2}$	
	9.81 (0.5) - f = (0.5 + 0.8) (2.25)	C1
	f = 1.98 N	A1
7(b)(iv)	√/ m s ^{−1}	
	2.3	
	1.8	
	0 0.02 0.80 t/ s	
	Straight line through origin with a higher gradient and ends before	B1
	0.60 S with speed greater than 1.6 m S 1.	
	Horizontal line after hitting the floor (before 0.8 s)	B1
7(c)(i)	If N passes through O, the block will topple as there will be a net anti-	B1
7(-)(!!) 4	clock wise moment due to f.	
7(C)(II) 1.		
	N	
	L I	
	Ŵ	
	N must be same length as W as both have the same magnutude	B1

Qns	Answer	Marks
7(c)(ii) 2.	Taking moments about O,	C1
	$N\left(\frac{1.2}{1.2}\right) = f\left(\frac{2.5}{1.2}\right)$	
	$\begin{pmatrix} 2 \end{pmatrix}$ $\begin{pmatrix} 2 \end{pmatrix}$	
	mg(0.60) = ma(1.25) (for $N=mg & f=ma$)	C1
	$a = \frac{(9.81)(0.60)}{(0.60)}$	
	1.25	
	$= 4.71 \text{ m s}^{-2}$	A1
8(a)(i)	Ohmic graph	B1
8(a)(ii)	Diode graph	B1
8(b)(i)	The p.d. between 2 points in a circuit is the energy converted per unit electric charge from	B1
	electrical to non-electrical forms when charges moved between the 2 points.	B1
8(b)(ii)	Potential difference refers to energy conversion per unit charge from electrical to non-electrical forms. Emf refers to energy conversion per unit charge from non-electrical to electrical forms.	B1
8(c)(i)	N = Q/e = It/e	C1
	= 2.3 x (6 x 60 x 60)/1.60 x 10 ⁻¹⁹	
	$= 3.11 \times 10^{23}$.	A1
8(c)(ii) 1.	$P=V^2/R$	C1
	$48=12^{2}/R$	
	<i>R</i> =3.0Ω	A1
8(c)(ii) 2.	$A = \pi r^2 = \pi (9.1 \times 10^{-5})^2$	C1
	R=pL/A	C1
	$3.0 = (8.1 \times 10^{-7}) L / \pi (9.1 \times 10^{-5})^2$	
	<i>L</i> = 9.64 cm	Δ1
8(c)(ii) 3.	During operation, I^2R (joule) heating causes the filament to heat up.	B1
	The increased lattice vibration increases the resistance of the filament.	D4
8(c)(ii) 4.	Effective resistance = $(3/2) // (24/4) = 1.2 \Omega$	<u>С1</u>
	Current = 12/(1.2+0.026) = 9.79 A	
	Terminal p.d. = $E - Ir = 12 - (9.79)(0.026) = 11.75 V$	A1 A1
8(c)(ii) 5.	With the motor switched on, effective resistance of the circuit is lowered,	B1
	leading to higher current from battery.	
	vuth nigher current, the potential difference across the internal resistance is larger, leaving less potential difference across the lamps.	B1