
National Junior College   Science Department | Physics 

1 
 
 

 

1. Quantities & Measurement 
 

Content Page  

1.1 Physical Quantities and SI Units ........................................................................................................ 3 

1.1.1 Importance of SI Base Units ...............................................................................................3 

1.1.2 Physical Quantities: Base Quantities and Derived Quantities .............................................4 

Base Units .......................................................................................................................4 

S.I. Derived Units ............................................................................................................5 

1.1.3 Prefixes ..............................................................................................................................7 

1.1.4 Homogeneity of Physical Equations ...................................................................................8 

Dimensional Consistency ................................................................................................8 

Homogeneous equations .................................................................................................8 

Reasonable estimations ................................................................................................10 

1.2 Errors and Uncertainties .................................................................................................................. 11 

1.2.1 Systematic Errors .............................................................................................................11 

1.2.2 Random Errors .................................................................................................................12 

1.2.3 Distinction between Systematic Errors and Random Errors..............................................13 

1.2.4 Precision and Accuracy ....................................................................................................13 

1.2.5 Experimental uncertainties ...............................................................................................16 

Expressing measurements with its uncertainty ..............................................................16 

Fractional and Percentage Uncertainties .......................................................................17 

1.2.6 Consequential Uncertainty .............................................................................................20 

Asymmetric Uncertainty .................................................................................................24 

1.3 Scalars and vectors ......................................................................................................................... 25 

1.3.1 Vector addition .................................................................................................................26 

Sketching Techniques for Vector addition of vectors 𝑨 and 𝑩: .......................................26 

1.3.2 Scalar multiplication of a vector .....................................................................................31 

1.3.3 Vector subtraction ............................................................................................................32 

Change in a vector ........................................................................................................32 

Relative velocity ............................................................................................................34 

1.3.4 Scalar Product of two vectors (dot product) ......................................................................36 

Additional Reading Materials ................................................................................................................. 37 

1. The Importance of Indicating Physical Units in Data ..............................................37 



National Junior College   Science Department | Physics 

2 
 
 

 

2. The importance of accounting for experimental uncertainty. ..................................38 

Appendix ............................................................................................................................................... 39 

 

Learning Objectives 

 

1.1  Physical quantities and SI units  

(a)  Recall and use the following SI base quantities and their units: mass (kg), length (m), time 

(s), current (A), temperature (K), amount of substance (mol).  

(b)  Recall and use the following prefixes and their symbols to indicate decimal sub-multiples or 

multiples of both base and derived units: pico (p), nano (n), micro (μ), milli (m), centi (c), 

deci (d), kilo (k), mega (M), giga (G), tera (T).  

(c) Express derived units as products or quotients of the base units and use the named units 

listed in ‘Summary of Key Quantities, Symbols and Units’ as appropriate.  

(d)  Use SI base units to check the homogeneity of physical equations. 

(e)  Make reasonable estimates of physical quantities included within the syllabus. 

1.2 Errors and uncertainties 

(f)  Show an understanding of the distinction between random and systematic errors (including 

zero error), which limit precision and accuracy. 

(g)  Assess the uncertainty in derived quantities by adding absolute or relative (i.e. fractional or 

percentage) uncertainties or by numerical substitution (rigorous statistical treatment not 

required). 

1.3 Scalars and vectors 

(h)  Distinguish between scalar and vector quantities, and give examples of each. 

(i)  Add and subtract coplanar vectors. 

(j)  Represent a vector as two perpendicular components. 

 

 

 

All videos in this lecture notes can be found in this playlist: 

  

https://for.edu.sg/njphychpt1
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1.1 PHYSICAL QUANTITIES AND SI UNITS 
 

1.1.1 Importance of SI Base Units 
 

The International System of Units (SI)1 is the globally accepted standard for measurement. It 

ensures that scientists and engineers around the world can communicate their findings accurately 

and consistently. Here are some key reasons why SI units are crucial: 

1. Consistency: SI units provide a consistent framework for measurements, which is 

essential for comparing results from different experiments and studies. 

2. Accuracy: Using standardized units reduces the risk of errors and misunderstandings in 

scientific communication. 

3. Global Collaboration: SI units facilitate international collaboration in science, engineering, 

and industry, as everyone uses the same measurement system. 

4. Education and Training: Teaching and learning are simplified when a single, coherent 

system of units is used. 

 

Case Study: Mars Climate Orbiter2 

In 1999, NASA’s Mars Climate Orbiter mission failed because of a mix-up 

between metric and imperial units. The spacecraft was lost because one team 

used imperial units (pounds) while another used metric units (newtons) for a 

crucial calculation. This incident highlights the importance of using a 

standardized system of units to avoid costly mistakes. 

 

Self-study resources 

A SLS lesson on Physical Quantities and SI units https://for.edu.sg/01si 

 

 
1 The International System of Units (SI) provides definitions of units of measurement that are widely 
accepted in science and technology.  The International Bureau of Weights and Measures (BIPM) located 
in Sèvres near Paris, France has the task of ensuring world-wide uniformity of measurements and their 
traceability to the SI. A*STAR’s National Metrology Centre (NMC) is the national measurement institute of 
Singapore and it establishes and maintains measurement standards at the highest level of accuracy locally.  
 
2 Read more about the importance of indicating physical units in the  found in Page 38 below 

https://for.edu.sg/01si
http://www.bipm.org/en/home/
https://for.edu.sg/marsclimateorbiter
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1.1.2 Physical Quantities: Base Quantities and Derived Quantities 
 

In Physics, quantities that can be measured are known as physical quantities. Each quantity 

consists of a numerical magnitude and a unit. (For vectors, there are directions as well.) 

Quantities can be classified as base quantities or derived quantities. 

Base quantities are the 7 physical quantities of the S.I. system by which all other physical 

quantities are defined. They are arbitrarily chosen by scientists so that they: 

a) form the smallest set of physical quantities that will lead to a complete description of 

physics in the simplest terms. 

b) are based on international agreement by scientists. 

Derived quantities are obtained from one or more of the base quantities through a defining 

equation. 

Base Units 
 

• There are 7 base units, one for each of the base quantities. 

• Base units are the 7 base units of the S.I. system, related to a base quantity, whose 

magnitude is defined without referring to any other units. The units used in measurement 

are the International System of Units (SI). 

Base Quantity Base Unit Name 

Length m metre 

Mass kg kilogram 

Time s second 

Electric current A ampere 

Temperature K kelvin 

Amount of substance mol mole 

Luminous Intensity3 cd candela 

• "Kilometres", "Centimetres", "Grams", etc are multiples or sub-divisions of the respective 

SI Base units.  

 
3 * Not in A level syllabus.  Luminous intensity is "perceived brightness" and it is different from 

intensity because the sensitivity of the human eyes varies across different wavelengths. Hence a 

very intense x-ray source will have zero perceived brightness as seen by the human eye. 
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S.I. Derived Units 
 

• A derived unit can be expressed in terms of base units by using the defining equation of 

the quantity.  

• It is obtained from the base units by multiplication and/or division; without 

including any numerical factors. 

• There are 22 SI derived units that are given special names (scan QR on 

right).  You do not need to memorise these special names. 

• Some examples of SI derived units are shown below: 

 

• There are also some non-S.I. Units that are accepted for use together 

with S.I. units  

• You may refer to the QR code on the right for some of the non-SI units 

that are accepted for use with SI units.  You do not need to memorise 

any of them. 

• SI units are presented in index form i.e. m s-1 instead of m/s 

A summary of Key Quantities, Symbols and Units can be found at the back of this lecture notes 

under Appendix. 

 

 

 

 

DERIVED QUANTITIES Defining 

Equation 

SI Derived Units Special Name 

Volume Vol = l 3 m3 - 

Velocity v = s/t m s-1 - 

Frequency f = 1/T s-1 Hz 

Force F = ma kg m s-2 N 

Work or Energy W = Fs kg m2 s-2 J 

Pressure P = F/A kg m-1 s-2 Pa 

Charge Q = It A s C 

https://for.edu.sg/si-derived-unit-poster
https://physics.nist.gov/cuu/Units/outside.html
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Example 1.1 
 
The energy E of a photon of frequency f is given by E = hf, where h is the Planck constant. 
What is the unit of h in base units? 
 
Solution 
 
(Take note of the proper presentation as shown below) 
 

ℎ =
𝐸

𝑓
. Since 𝐸 =

1

2
𝑚𝑣2, we have 𝐽 = 𝑘𝑔 𝑚2 𝑠−2 

 

Units of ℎ =
𝑘𝑔 𝑚2 𝑠−2

𝑠−1 = 𝑘𝑔 𝑚2 𝑠−2+1 = 𝑘𝑔 𝑚2 𝑠−1.   

 
Note that most constants in physics have units. 

 

Example 1.2 
 

The drag coefficient CD of a car moving with speed v through air of density  is given by         

 𝐶𝐷 =
𝐹

2𝑝𝑣2𝐴
 where 𝐹 is the drag force exerted on the car and 𝐴 is the maximum cross-sectional 

area of the car perpendicular to the direction of travel.  Determine the units of the constant 𝐶𝐷. 
 
Solution 
 

From 𝐶𝐷 =
𝐹

2𝑝𝑣2𝐴
 and 𝐹 = 𝑚𝑎 

 

Units of  CD = 
(𝑘𝑔𝑚𝑠−2)

(𝑘𝑔𝑚−3)(𝑚𝑠−1)2(𝑚2)
  =

𝑘𝑔𝑚𝑠−2

𝑘𝑔𝑚𝑠−2 = 1          

 
Therefore, CD has no units. i.e. it is dimensionless.  
 
 
 
 

 

A quick note about what “dimensionless” means 

In older textbooks, the 7 base quantities are also called the 7 fundamental dimensions.  Hence, 

you may encounter the term "dimensionless quantity" in your A level exam.   

A dimensionless quantity is a quantity without any physical units and thus a pure number, for 

example the constant CD in example 1.2 is a dimensionless quantity. However, there is one 

exception.  Angles in physics is dimensionless but has a unit of "radian".  
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1.1.3 Prefixes 
 

In physics, it is common to encounter quantities that are very large or minute in magnitude.  

For example, Earth’s mean radius is estimated to be 6 400 000 m. Radius of a hydrogen nucleus 

is approximately 0.000 000 000 000 001 3 m.  

To include all the zeros in all computation or steps will be undesirable and hence scientists 

adopted any of the 2 methods: use of scientific notation (standard form) or prefixes.  

 

Prefix Symbol Sub-multiple Prefix Symbol Sub-multiple 

Pico p 10-12 Kilo k 103 

Nano n 10-9 Mega M 106 

Micro μ 10-6 Giga G 109 

Milli m 10-3 Tera T 1012 

Centi c 10-2    

Deci d 10-1    

 

There are two new prefixes (highlighted in blue) that you need to know in the A level Physics 

syllabus.  The rest of the prefixes were introduced in the O level Physics syllabus. 

Example 1.3 
 
Convert the following measurements to their equivalent values using the appropriate prefixes. 
 
5,000 m = ______ km 

0.002 g = ______ mg 

3,000,000 W = 3 ___  

0.000001 s = 1 _____ 

2,000,000,000 Hz = ______ GHz 

Solution: 
 
5 km, 2 mg, 3 MW, 1 μs, 2GHz 
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1.1.4 Homogeneity of Physical Equations 
 

Dimensional Consistency 
 

An equation must always be dimensionally consistent. Only physical quantities with the same 

dimension (e.g., length, time, mass) can be directly compared to each other. 

Example: 1 cm is less than 1 inch (1 inch = 2.54 cm). 

If physical quantities have different dimensions (e.g., mass vs. time), they cannot be compared.  

Example: It is meaningless to ask whether a kilogram is greater than, equal to, or less 

than an hour. 

This also means that any two quantities can only be equated, added, or subtracted if they have 

the same dimensions (i.e., they can be made to have the same units with appropriate conversions). 

• Example: 

o 4 N + 2 kg: Dimensionally inconsistent (cannot be evaluated). 

o 4 cm – 2 mm: Dimensionally consistent. 

▪ Converting all terms to meters: 0.04 m – 0.002 m = 0.038 m. 

Homogeneous equations 
 

An equation where each term has the same base units (dimensionally consistent) is known as a 

homogeneous equation. 

Rules for Homogeneous Equations 

1. Addition/Subtraction: Only terms with the same units can be added or subtracted. 

e.g. 𝐶 =  𝐴 +  𝐵  implies that A and B must have the same units. 

2. Equality: Units on both sides of the equation must be the same. 

e.g. 𝐴 =  𝐵 implies that 𝐴 and 𝐵 must have the same units. 

3. Exponents: The exponent of a term must not have any unit. 

e.g. 𝑒
−𝑡

𝑅𝐶 implies that units of 𝑅𝐶 combined must have the same unit as time, 𝑡. 

Important Note 

A homogenous equation may not be correct, but an equation that is not homogeneous is 

definitely incorrect.  For example, the equation: 𝐸𝑘 = 𝑚𝑣2 is homogenous but incorrect because 

of a missing dimensionless constant term.  The correct version is 𝐸𝑘 =
1

2
𝑚𝑣2. 
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Example 1.4 
 

Which of the following is the correct expression for the period 𝑇 of a simple pendulum of 

length 𝑙?  𝑔 is the acceleration due to gravity.  
 

(A) 𝑇 = 2𝜋√𝑔𝑙 (B) 𝑇 =
2𝜋

√𝑔𝑙
 (C) 𝑇 = 2𝜋√

𝑙

𝑔
 (D) 𝑇 = 2𝜋√

𝑔

𝑙
 

 
 
 

       

Solution: 
 
Unit of 𝑇 is s;   units of 𝑙 is m;   units of g is ms-2 
 

Units of 2𝜋√
𝑙

𝑔
= √

𝑚

𝑚𝑠−2 = √𝑠2 = 𝑠  

 
Hence (C) is the correct expression. 
 
 

 

Example 1.5 
 

One of the equations of motion for constant acceleration is 𝑠 = 𝑢𝑡 +
1

2
𝑎𝑡2 where 𝑠 represents 

displacement, 𝑢 is the initial velocity, 𝑡 is time and 𝑎 is acceleration.   
 
Show that this equation is homogenous. 
 
Solution: 
 

Units of 𝑢𝑡 = (𝑚𝑠−1)(𝑠) = 𝑚 
 

Units of 
1

2
𝑎𝑡2 = (𝑚𝑠−2)(𝑠2) = 𝑚 

 

Since units of 𝑢𝑡 = units of 
1

2
𝑎𝑡2 = units of 𝑠, the equation is homogenous. 

 
Please note the presentation style for this type of question. 
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Reasonable estimations 
 

“Reasonable estimates” refer to order of magnitude estimates, which represent values typically 

expressed to the nearest power of ten. These estimates are usually written to 1 significant figure 

(or at most 2 significant figures) and not more. 

 

  

 

 

 

 

  

Some Examples (No need to memorise) 
 

Length 

Diameter of an atom   1 x 10-10 m (1 angstrom)   

Diameter of nucleus   1 x 10-15 m  

Wavelength of visible light  4 to 7 x 10-7 m 

 

Density 

Density of air    1 kgm-3      

Density of water    1000 kgm-3 

Density of metals   10000 kgm-3  

 

Mass 

Mass of an apple   0.1 kg      

Mass of person    60 kg 

Mass of a car    1000 kg      

Mass of a bus    10000 kg 

 

Speed 

Speed of running person  10 kmh-1 or 3 ms-1    

Speed of car   60 kmh-1 or 20 ms-1 

Speed of air molecules   400 ms-1  (at room temp)   

Speed of light   3 x 108 ms-1 

Speed of sound   300 ms-1 

 

Others 

Atmospheric pressure  1 x 105 Pa      

Earth's magnetic field  5 x 10-5 T  
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1.2 ERRORS AND UNCERTAINTIES 
 

Error refers to the difference between a measured quantity and its true value. Errors are 

unavoidable when taking measurements during an experiment. In experimental physics, the 

challenge is to invent better and more precise instruments or methodologies to determine 

fundamental physical constants (such as the speed of light, Planck constant, and rest masses of 

fundamental particles) with greater precision.  

Any changes in these constants over time will significantly impact our understanding of the 

universe and its evolution. 

Errors can be classified into two categories: Systematic Errors and Random Errors. 

1.2.1 Systematic Errors 
 

A systematic error is one that leads to readings that are consistently more or consistently less 

than the true value.  

Note that the phrase is “consistently more or consistently less” NOT “consistently more or less.” 

• Systematic errors have the same magnitude and sign when measurements are repeated 

• Cause: It is a reproducible error caused by imperfect equipment, wrongly calibrated 

instruments, experimental techniques, and/or environmental conditions. 

• Elimination: It can be eliminated if the source is known. For example, zero error of a 

vernier caliper. 

• Detection: To detect systematic errors, you need to: 

o Make measurements under different experimental conditions. 

o Use another technique to perform the experiment. 

o Use a second instrument to do the measurements and compare the readings or 

results. A consistently different set of results reveals the presence of systematic 

errors. 

Some common Systematic Errors 

1. Zero Error: Occurs when the pointer of an instrument does not exactly coincide with the 

zero mark when it is supposed to. Always check for zero errors before using instruments 

such as a micrometer screw gauge or vernier calipers. 

2. End Error: For example, in some rulers, the 0-cm mark starts right at the edge of the ruler. 

End error occurs when there is wear and tear at the ends of such a ruler after being used 

for many years, such that the 0-cm mark is no longer present. 

In experiments, systematic errors that can be accounted for or rectified should be corrected. They 

should not be included when discussing errors in your practical experiments. 
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1.2.2 Random Errors 
 

Even if every step of an experiment is done properly and all systematic errors are accounted for, 

repeated measurements of a quantity may not give identical values. The variation in the values 

of repeated measurements is known as random error. 

• Random error have different magnitudes and signs when measurements are repeated.  

• Nature: A random error gives rise to a scatter of readings around a mean value. 

Random errors cannot be eliminated, even if the source is known, because it is impossible 

to reproduce exactly the same conditions in each measurement. 

 
 Pure Random Error            Random with Systematic Error 

 

Types of Random Errors 

• Pure Random Error: Variations purely due to random factors. 

• Random with Systematic Error: Variations that include both random and systematic 

errors. 

Reducing Random Errors 

Random errors can be reduced by using an appropriate method of averaging. (See Example 1.6 

below) 

Some common Sources of Random Errors 

1. Fluctuating Environmental Conditions: Such as temperature, pressure, vibrations, etc. 

2. Errors of Judgment: For example, the observer’s estimate of a fraction of the smallest 

division may vary from time to time. 

 

Example: “Faster-than-Light” Neutrinos (more on page 38).  

In the OPERA experiment, two sources of systematic error were not accounted for, resulting in 

the calculated speed of the neutrinos being faster than the speed of light in a vacuum. This 

highlights the importance of accounting for all potential sources of error to ensure accurate and 

reliable measurements. 

Scale 
S 

S : Systematic Error 
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1.2.3 Distinction between Systematic Errors and Random Errors 
 

 Systematic Errors Random Errors 

Effect on 

readings 

It causes the readings to be 

consistently more or consistently 

less than the actual value. 

This error has a constant value. 

It causes a scatter of readings about a 

mean value. 

 

Detection It can be detected by making 

measurements under a different 

experimental conditions or by 

using another technique to 

perform the experiment. A 

consistently different set of results 

may reveal the presence of 

systematic errors. 

It can also be detected by 

comparing the trend of points in a 

plotted graph and the equation that 

relates the quantities. 

It can be detected by plotting a graph 

and drawing a best-fit line to the points; 

the presence of random errors is 

reflected by the scattering of points 

about the best-fit line.  

Minimization/ 

Elimination 

Systematic errors can be 

eliminated if the cause is known 

and rectified.   

Random errors cannot be eliminated, 

but can be minimized by averaging.  

 

1.2.4 Precision and Accuracy 
 

Accuracy is a measure of how close a measurement or result is to the true value. It depends on 

how well systematic errors can be controlled or compensated for. 

Accuracy depends on the equipment used, the skill of the experimenter, and the techniques 

employed. 

Precision is a measure of how close the repeated measured values are to each other regardless 

of true value. (We can also say precision is a measure of how small the spread of values are) It 

depends on how well random errors can be minimized. 

Precision is within the control of the experimenter. The experimenter may choose different 

measuring instruments and use them with varying levels of skill, affecting the precision of 

measurement. 
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Examples of representations of Precision vs Accuracy in Experimental measurements 

Graphical representation 

y-axis: number of measurements or probability density 

x-axis: value of measurement 

 

 In general: 

When the peak (measured mean) coincides 

with the real value, the measurements are 

accurate.  

(inaccurate: peak is shifted)  

When the peak is sharp (spread of readings 

are small), the measurements are precise.   

(imprecise: peak is broad/flat) 

Another representation – Target board: 
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In this target board, the bullseye (the center) represents the true value of what you’re measuring. 

Each measurement is marked with a cross on the target board. 

 

• If your crosses are spread out evenly around the bullseye, the average position of these 

crosses will be close to the center. This means your measurements are accurate. 

• If your crosses are tightly clustered together, your measurements are precise. 

 

Checkpoint! 

Consider the following two groups of measurements of x which has a true value of 20.3 m s-1. 

 

 1st reading 2nd reading 3rd reading 4th reading 5th reading average 

Group 1 20.1 20.3 20.2 20.1 20.5 20.2 

Group 2 20.1 20.1 20.2 20.2 20.1 20.1 

 

Group _____ is more accurate because ____________________________________________. 

Group _____ is more precise because _____________________________________________. 
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1.2.5 Experimental uncertainties 
 

Self-study resources 

A SLS lesson on uncertainties https://for.edu.sg/uncertainties 

 

 

Random errors and unknown systematic errors give rise to uncertainty in a measured value or in 

a calculated value of some physical quantity. 

In Physics, every measurement comes with uncertainty.  

Expressing measurements with its uncertainty 
 

The uncertainty of any measurement is always rounded to 1 s.f. as it is usually an estimate. 

 

The number of significant figures in a measurement indicates its precision. The measured value 

should be stated to the same precision as the uncertainty. For example, if ∆L = 0.5 cm, then the 

value of L (in cm) should be rounded off to one decimal place,  

e.g.: 

L = (16.9 ± 0.5) cm  ✓ 
 

L = (16.93  0.5) cm   
 

L = (17  0.5) cm  

In the example above, the uncertainty is in the first decimal place. Hence the length measurement 

could vary from 16.4 cm to 17.4 cm. 

Any additional decimal places beyond the first are not significant and do not improve the precision 

of the measurement of L.  

Example 1.6 
 
Express the following values in an appropriate form, corresponding to the units given. 
 

L ∆L Correct form 

37.3333 cm 0.0388 cm L = (37.33 ± 0.04) cm 

10.1667 mm 0.99 mm L = (10 ± 1) mm 

20793 m 1003 m L = (21000 ± 1000) m 
 

 

https://for.edu.sg/uncertainties
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In many cases, it may be necessary to express the value in standard form or using prefixes,  

e.g.: 

L = (0.0000237 ± 0.0000002) m    L = (2.37 ± 0.02) × 10−5 m 
L = (17.0 ± 0.5) cm      L = (17.0 ± 0.5) × 10−2 m 
L = (2400 ± 100) m     L = (2.4 ± 0.1) × 103 m 

            = (2.4 ± 0.1) km 

Fractional and Percentage Uncertainties 
 

Suppose a value R is written with its uncertainty:  𝑅 ±  𝛥𝑅 

• actual or absolute uncertainty of 𝑅 = ± 𝛥𝑅 

• fractional uncertainty of 𝑅 =  
∆𝑅

𝑅
.  Fractional uncertainty has no unit. 

• percentage uncertainty of 𝑅 =  
∆𝑅

𝑅
× 100% 

Both fractional and percentage uncertainty is usually written to 2 significant figures.  

Fractional or percentage uncertainty tells you how large the uncertainty is relative to the average/ 

measured value.   

For example, it is only possible to judge if an actual uncertainty of ∆L = 0.5 cm is significant, if we 

know how large it is compared to the measured quantity: 

 

Measurement and absolute uncertainty: 

𝐿 ±  𝛥𝐿  
Percentage uncertainty in L =  

∆𝐿

𝐿
× 100% 

𝐿 =  (17.0 ±  0.5)  𝑐𝑚  
0.5

17.0
× 100% = 2.9%  

𝐿 =  (1.7 ±  0.5)  𝑐𝑚  
0.5

1.7
× 100% = 29% (relatively large) 

𝐿 =  (170.0 ±  0.5)  𝑐𝑚  
0.5

170
× 100% = 0.29% (relatively small) 

 

If the fractional or percentage uncertainty is very large, it means that the experiment is poorly 

conducted (i.e. poor technique, inappropriate procedure and/or wrong choice of instrument). 

We can reduce the percentage uncertainty in a measurement by either: 

(i) reducing absolute uncertainty by using a more precise instrument or  

(ii) increasing the measured value (see example below).  
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Example 1.7 
 
A student wishes to determine the diameter of a 10-cent coin. He only has a 15-cm ruler with 
him and eight 10-cent coins. Which of the following two methods of averaging should the 
student use to reduce percentage error and why? 
 
Method A:  
 
Line up the eight coins in a straight line (as shown below), measure the total length from one 
end to another and then divide the length by 8 to get the average diameter of one coin. 
 
 
 
 
 
 
 
 
 
 
 
 
Uncertainty (associated with the length measurement) = 0.1 cm  
 

Total length = 14.8  0.1 cm (this means that we are very sure the length lies somewhere 
between 14.7 cm to 14.9 cm)  
 
i.e. 14.7 ≤ 𝑙 ≤ 14.9 cm 
 

Average diameter 𝑑 =
𝑙

8
      

14.7

8
≤ 𝑑 ≤

14.9

8
  

 

       Þ 1.84 ≤ 𝑑 ≤ 1.86 cm  
 

      𝑑 = 1.85 ± 0.01 cm 
 
 
The uncertainty of the d value is 0.01 cm < 0.1 cm (uncertainty associated with length 
measurement)  
 

The percentage uncertainty of the d value is 
0.01

1.85
× 100% = 0.54% 
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Method B: Measure each of the 8 coins separately to get 8 readings and then take the 
average of the 8 readings to get the average diameter of one coin. 
 
 
 
 
 
 
 
 
 
 
 
Uncertainty (associated with the length measurement) = 0.1 cm 
 

Each measurement of 𝒅 lies between 1.7 cm to 1.9 cm, i.e. 𝟏.𝟕 ≤ 𝒅𝒊 ≤ 𝟏.𝟗  
 

or 𝒅𝒊 = (𝟏. 𝟖 ± 𝟎.𝟏) cm 
 

If you add two values of 𝒅 together, then the sum will lie between 𝟏.𝟕 + 𝟏. 𝟕 = 𝟑.𝟒 and 
𝟏.𝟗 + 𝟏. 𝟗 = 𝟑. 𝟖 cm, i.e. 𝟑.𝟒 ≤ 𝒅𝟏 + 𝒅𝟐 ≤ 𝟑.𝟖 
 

Hence, if you add 8 values of 𝒅 together, you will get (𝟏. 𝟕 × 𝟖) ≤ 𝟖𝒅 ≤ (𝟏. 𝟗 × 𝟖) 
 
(𝟏.𝟕×𝟖)

𝟖
≤ 𝒅average ≤

(𝟏.𝟗×𝟖)

𝟖
 which will give you back the original range:  

 

𝟏. 𝟕 ≤ 𝒅average ≤ 𝟏.𝟗 

 

or 𝒅average = (𝟏.𝟖 ± 𝟎. 𝟏) cm. 

 
The absolute uncertainty of the d value is still 0.1 cm.  

The percentage uncertainty is  
0.1

1.8
× 100% = 5.6% 

 
Method A is better at reducing percentage uncertainty. 
 
Method A reduces percentage uncertainty by averaging over a single measurement of 
multiple coins, effectively distributing the uncertainty across all the coins. This 
approach minimizes the impact of uncertainty on the length measurement. In contrast, 
averaging multiple measurements of individual coins does not reduce random error, as 
each measurement introduces its own uncertainty, contributing cumulatively to the total 
uncertainty. 
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1.2.6 Consequential Uncertainty 
 

Certain quantities, like speed, are sometimes derived indirectly from other measurements (e.g. 

distance and time). Estimating the consequential uncertainty of derived values is essential.  

The table below shows the two most commonly used formulae in calculating uncertainties in a 

derived quantity.  The symbols 𝑘, 𝑚, 𝑛 and 𝑝 represent constants (e.g. 4, 2.7 and 6) while 𝐴, 

𝐵 and 𝐶 represents independent variables.   

You can choose to memorise the two formulae or you can use first principles, for example: ∆𝑍 =
𝑍𝑚𝑎𝑥 − 𝑍𝑎𝑣𝑒𝑟𝑎𝑔𝑒 to calculate the uncertainty. 

 

 Equation Uncertainty Remarks 

1 𝑌 = 𝑚𝐴 + 𝑛𝐵  or 

𝑌 = 𝑚𝐴 − 𝑛𝐵 

 

Pure addition and/or 

subtraction 

 

𝐷𝑌 = 𝑚𝐷𝐴 + 𝑛𝐷𝐵 

 

Note that for both addition 

and subtraction, we add 

the uncertainties. 

2 
𝑍 = 𝑘 (

𝐴𝑛𝐵𝑚

𝐶𝑝
) 

 

Pure multiplication 

and/or division 

(including exponential) 

 

∆𝑍

𝑍
= |𝑛| (

∆𝐴

𝐴
) + |𝑚|(

∆𝐵

𝐵
) + |𝑝| (

∆𝐶

𝐶
) 

In this case, it is easier to 

calculate the fractional 

uncertainty first before 

multiplying the fractional 

uncertainty with average Z 

to get ∆𝑍. 

 

Note that the absolute values of n, m and p are always used when calculating the uncertainty. 

 

First principle method (max – best method): 

1) Determine 𝑍𝑚𝑎𝑥 

2) Determine 𝑍𝑎𝑣𝑒𝑟𝑎𝑔𝑒 

3) Calculate ∆𝑍 = 𝑍𝑚𝑎𝑥 − 𝑍𝑎𝑣𝑒𝑟𝑎𝑔𝑒 

 



National Junior College   Science Department | Physics 

21 
 
 

 

Example 1.8 
 

Given that 𝑌 = 3𝐴 − 2𝐵, prove from first principles, that the uncertainty in 𝑌 is given by ∆𝑌 =
3∆𝐴 + 2∆𝐵.  
 
Solution 
 

𝑌𝑚𝑎𝑥 = 3𝐴𝑚𝑎𝑥 − 2𝐵𝑚𝑖𝑛 = 3(𝐴 + ∆𝐴) − 2(𝐵 − ∆𝐵) = 3𝐴 − 2𝐵 + 3∆𝐴 + 2∆𝐵 = 𝑌 + 3∆𝐴 + 2∆𝐵  
 
∆𝑌 = 𝑌𝑚𝑎𝑥 − 𝑌 = 𝑌 + 3∆𝐴 + 2∆𝐵 − 𝑌 = 3∆𝐴 + 2∆𝐵  (proved) 
 
 

Example 1.9 
 
In an experiment to determine the resistivity of a piece of metallic wire, the following 

measurements were obtained: 

Resistance of wire: 𝑅 = 0.800 ± 0.002  

Length of wire:  𝑙 = 1.000 ± 0.002 m 

Diameter of wire:  𝑑 = 0.50 ± 0.01 mm 

The resistivity, 𝜌 of the wire is given by 𝜌 =
𝜋

4
(
𝑅𝑑2

𝑙
). 

Determine the value of 𝜌 together with its uncertainty using 

(a) ∆𝜌 = 𝜌𝑚𝑎𝑥 − 𝜌 

(b) 
∆𝜌

𝜌
=

∆𝑅

𝑅
+

∆𝑙

𝑙
+ 2

∆𝑑

𝑑
 

Solution 

(a) 𝜌 =
𝜋

4
(
𝑅𝑑2

𝑙
) =

𝜋

4
(
0.800×(0.5×10−3)

2

1.000
) = 1.571 × 10−7  m 

 

𝜌𝑚𝑎𝑥 =
𝜋

4
(
𝑅𝑚𝑎𝑥𝑑𝑚𝑎𝑥

2

𝑙𝑚𝑖𝑛
) =

𝜋

4
(
0.802×(0.51×10−3)

2

0.998
) = 1.642 × 10−7  m 

 

∆𝜌 = (1.642 − 1.571) × 10−7 = 0.071 × 10−7 ≈ 0.07 × 10−7  m (1 sig. fig.) 
 

Hence, 𝜌 = (1.57 ± 0.07) × 10−7  m 
 

(b) 
∆𝜌

𝜌
=

∆𝑅

𝑅
+

∆𝑙

𝑙
+ 2

∆𝑑

𝑑
=

0.002

0.800
+

0.002

1.000
+ 2(

0.01

0.50
) = 0.0445 

 

∆𝜌 = 0.0445 × 𝜌 = 0.0445 × 1.571 × 10−7 = 0.0699 × 10−7 ≈ 0.07 × 10−7  m 
 

Hence, 𝜌 = (1.57 ± 0.07) × 10−7  m 
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Example 1.10 
 

The  period 𝑇 of a simple pendulum of length 𝐿 is given by the following equation 

𝑇 = 2𝜋√
𝐿

𝑔
 

where 𝑔 is the acceleration of free fall. 

In an experiment to measure the acceleration 𝑔, the length 𝐿 is measured as (6.25 ± 0.05) cm. 

What is the maximum percentage uncertainty in 𝑇  such that 𝑔  can be determined with a 

maximum uncertainty of  2% ? 

A 0.6 % B 1.2 % C 1.4 % D 2.8 % 

 

Solution 

Note that from the phrasing used in the question, 𝑔 is to be calculated from 𝑇 and 𝐿 
where 𝑇 and 𝐿 are the measured quantities.  Hence we must expressed the calculated 
quantity as the subject of our equation before we proceed to work out the uncertainty. 
 

From  𝑇 = 2𝜋√
𝐿

𝑔
,    𝑔 =

4𝜋2𝐿

𝑇2  

 
Since the formula involves purely multiplication and division (no addition or subtraction 
of terms within the formula), it is faster to use the fractional uncertainty formula to 
compute the percentage uncertainty in 𝑇.  
 
∆𝑔

𝑔
=

∆𝐿

𝐿
+ 2(

∆𝑇

𝑇
) 

 
∆𝑇

𝑇
=

1

2
(
∆𝑔

𝑔
−

∆𝐿

𝐿
) =

1

2
(
∆𝑔

𝑔
−

∆𝐿

𝐿
) =

1

2
(

2

100
−

0.05

6.25
) = 6 × 10−3 

 

Percentage uncertainty in 𝑇 =
∆𝑇

𝑇
× 100% = 6 × 10−3 × 100% = 0.6% 

 

 

 

 

 

 

Example 1.11 
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The period of a pendulum was measured to be T = (2.46  0.04) s.  

The frequency of the pendulum is given as 𝑓 =
1

𝑇
. Determine f and its associated uncertainty. 

 
Method 1: First principle, Max – average method  
 
 Min value Average value Max value 

 
f / Hz 

1

𝑇𝑚𝑎𝑥
=

1

2.50
 

= 0.4000 𝐻𝑧 

1

𝑇
=

1

2.46
 

= 0.4065 Hz 

1

𝑇𝑚𝑖𝑛
=

1

2.42
 

=0.4132 Hz 

 
By Max-average method, ∆f = 0.4132 – 0.4065 = 0.0067 Hz = 0.007 Hz (1 s.f.) 
 

f = (0.407  0.007) Hz 
 
 
Method 2: Formula method 

 

If 𝑌 =
1

𝑋
 then the fractional uncertainty 

𝛥𝑌

𝑌
=

𝛥𝑋

𝑋
,  

 

𝑓 =
1

𝑇
=

1

2.46
= 0.4065 Hz 

 

Fractional uncertainty in f = 
𝛥𝑓

𝑓
=

𝛥𝑇

𝑇
=

0.04

2.46
= 0.01626 

 
∆f = 0.01626 × 0.4065 = 0.00661 = 0.007 (1 s.f.) 
 

f = (0.407  0.007) Hz 
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Asymmetric Uncertainty 
 

Example 1.12 
 
Given that 𝜃 = (25 ± 2)°.  Determine the value of cos 𝜃 together with its associated uncertainty. 
 

 / cos(𝜃/°) 

23 0.9205 

25 0.9063 

27 0.8910 

 
Uncertainty of cos 𝜃, i.e (avg – min) 

= |cos 25 − cos 23| = 0.0142 ≈ 0.01  
  
OR    
 

 Uncertainty of cos 𝜃, i.e (max – avg) 

= |cos 27 − cos 25| = 0.0153  ≈ 0.02       
 
OR      
 

Uncertainty of cos 𝜃, i.e 1/2(max – min)   
= 1/2  |cos 27 − cos 23| = 0.0148 ≈ 0.01  
 

cos 𝜃 = 0.91 ± 0.02 (i.e. take the larger difference) 
 

Note: Student can calculate the uncertainty of cos 𝜃 using ONE of the three methods. The 
larger difference of the uncertainty MUST be taken if a student calculated the uncertainty 
using more than 1 method. 
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1.3 SCALARS AND VECTORS 
 

Scalar quantities are physical quantities that can be represented by a magnitude only.   

They do not have a direction associated with them.  Some scalar quantities, like electric charge, 

magnetic flux, and potential energy, may have a positive or negative sign, which does not indicate 

direction. 

Vector quantities are physical quantities that possess a magnitude and a direction in space. 

They are represented by a directed line segment (which is 

basically an "arrow").  The length of the "arrow" represents the 

magnitude of the vector while the direction of the "arrow" 

indicates direction 

For A level Physics, vector quantities are common, so proficiency in vector operations is essential. 

Example 1.13 
 
Is electric current a scalar or vector quantity? 
 
Solution 
 
It is a scalar quantity even though it has a direction because it does not obey the laws 
of vector addition.  Electric currents in a circuit add like scalars. 
 
 
 
 
 
 
 

Directed line segment 

𝐼1 
𝐼2 𝐼3 Scalar addition:      𝐼1 = 𝐼2 + 𝐼3  

 

If it follows vector addition, then 𝐼1  has 
to flow downwards instead of rightwards 

because both 𝐼2 and 𝐼3 flow downwards. 



National Junior College   Science Department | Physics 

26 
 
 

 

Example 1.14 
 
Categorise the following quantities into Scalar vs Vector Quantity 
 
Distance, displacement, speed, temperature, velocity, acceleration, energy, force, power, 
mass, density, momentum, weight, moment / torque 
 
Solution 
 

Scalar Quantity Vector Quantity 

distance 
speed 
temperature 
energy 
power 
mass 
density 

displacement 
velocity 
acceleration 
force 
momentum 
weight 
moment/ torque 

 

1.3.1 Vector addition 
 

The resultant of two or more vectors is found by  

➢ Method 1(A): Scale drawing  
➢ Method 1(B): Sketch the vectors and apply the sine rule, cosine rule, or geometry 
➢ Method 2     : Resolve each vector into perpendicular components, then add these 

components separately and use pythagora’s theorem to determine resultant.   
 

The resultant vector is usually represented by a double arrow in a sketched diagram.  

Note: For A level Physics, scale drawing is only used if explicitly requested in the question.  

Sketching Techniques for Vector addition of vectors 𝑨⃗⃗  and 𝑩⃗⃗ : 
 

Triangle method 

1) Draw the first vector 𝐴  

2) Draw the second vector 𝑩⃗⃗  with its tail at the head of the 

first vector 𝐴  
3) The resultant vector joins the tail of the first to the head 

of the second.  

 

𝐵⃗  

𝐴  

𝐴  
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Parallelogram method 

1) Draw both vectors 𝐴  and 𝑩⃗⃗  from the same starting 

point, forming adjacent sides of a parallelogram. 

2) Complete the parallelogram with dotted lines.  

3) The resultant vector is the diagonal from the common 

starting point to the point the dotted lines intersect.  

 
 

Useful Formulae: 

Sine Rule:   
𝒂

𝐬𝐢𝐧𝑨
=

𝒃

𝐬𝐢𝐧𝑩
=

𝒄

𝐬𝐢𝐧 𝑪
 

Cosine Rule:  𝒂𝟐 = 𝒃𝟐 + 𝒄𝟐 − 𝟐𝒃𝒄𝐜𝐨𝐬𝑨  

Only for right-angled triangle: 

Pythagoras theorem:  𝒂𝟐 + 𝒃𝟐 = 𝒄𝟐 

 

Example 1.15 
 
The figure shows two forces acting at a point O. Determine the magnitude and direction of the 
resultant force. 
 

Solution:  

Resultant force = √52 + 10.02 − 2(5)(10.0) cos 75° 
 
                         = 9.96 N 
 

Using sine rule:
10.0

𝑠𝑖𝑛(𝜃 + 45°)
=

9.96

𝑠𝑖𝑛(70°)
 

𝜃 = 30.9° 
Resultant force is 30.9° to the left from the vertical. 
 

 

 

 

𝐵⃗  

𝐴  

O 

x 

y 

5.0 N 
10.0 N 

45o 30o 

 

c 

a 

b 
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Example 1.16 
 

(a) Write down the equation relating vectors P, Q, R and S for each of the diagrams given 

below: 

 

 
 

(b) The three vector diagrams shown above are drawn to scale. If all 4 vectors in each diagram 
are added together, which diagram has the largest resultant? 

 

Solution: First two approximately the same length, 3rd one is zero. 

 

 

 

 

Q = P + R + S Q + P = R + S Q + P + R + S = 0 
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Example 1.17 
 

A man starts from point O, walks 4.0 km due east to point A, followed by 3.6 km in a direction 56.3 
north of east to point P.  Determine the displacement of P relative to O. 
 
Solution 
 

We need to find the displacement 𝑂𝑃⃗⃗⃗⃗  ⃗ 
 

Mathematically: 𝑂𝑃⃗⃗⃗⃗  ⃗ = 𝑂𝐴⃗⃗⃗⃗  ⃗ + 𝐴𝑃⃗⃗⃗⃗  ⃗ 
 

i.e. 𝑂𝑃⃗⃗⃗⃗  ⃗ is the resultant of 𝑂𝐴⃗⃗⃗⃗  ⃗ and 𝐴𝑃⃗⃗⃗⃗  ⃗ 
 
Method 1(A):  Scale Drawing (Generally not used in ‘A’ level) 
 
Method 1(B):  Sketch the vector diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solve for resultant vector using Sine Rule and Cosine Rule 
 
 
From Cosine Rule:   
 
The magnitude (length) of OP is given by:  
 

|𝑂𝑃⃗⃗ ⃗⃗  ⃗|
2
= 4.02 + 3.62 − 2(4.0)(3.6) cos 123.7° = 44.9  

 

|𝑂𝑃⃗⃗ ⃗⃗  ⃗| = √44.9 = 6.7 km 

 

From Sine Rule: 
sin 𝜃

3.6
=

sin 123.7

|𝑂𝑃⃗⃗ ⃗⃗  ⃗|
  𝜃 = 26.6°  North of east 

 
 
 
 
 

P 

O 

North 

East 

A 

3.6 km 

4.0 km 

56.3 N of E 
123.7 

 
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Method 2: By Resolving Vectors perpendicularly 
 
Resolving each vector into its components in the x and y directions. 
 
In the x-direction:  
 

component of 𝑂𝐴⃗⃗⃗⃗  ⃗ in x dir = 4.0,  

component of 𝐴𝑃⃗⃗⃗⃗  ⃗ in x dir = 3.6 cos 56.3 = 2.0 
 

 Hence component of 𝑂𝑃⃗⃗⃗⃗  ⃗ in x dir = 4.0 + 2.0 = 6.0 
 
In the y-direction:  
 

component of 𝑂𝐴⃗⃗⃗⃗  ⃗ in y dir = 0,  

component of 𝐴𝑃⃗⃗⃗⃗  ⃗ in y dir = 3.6 sin 56.3 = 3.0 
 

Hence component of 𝑂𝑃⃗⃗⃗⃗  ⃗ in y dir = 0 + 3.0 = 3.0 
 
 

Magnitude of 𝑂𝑃⃗⃗⃗⃗  ⃗ = √6.02 + 3.02 = 6.7 km 
 

Direction of 𝑂𝑃⃗⃗⃗⃗  ⃗, 𝜃 = tan−1 (
3.0

6.0
) = 26.6°  North of east or anticlockwise from 𝑂𝐴⃗⃗⃗⃗  ⃗. 

 
The advantage of resolving vectors into perpendicular components is that the x-
components do not affect the y-components in anyway and vice versa. This property 
becomes important as we deal with the topics of Kinematics, Forces and Dynamics.  

 

Self-study resources 

A SLS lesson on 2-D Vector Addition by 
Resolving into Perpendicular Components 

https://for.edu.sg/2dresolve 

 

 

https://for.edu.sg/2dresolve
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Example 1.18 
 

A box of weight 𝑚𝑔 rests on a slope that is inclined at ° to the horizontal. Draw and label the 
components of the weight of the object parallel to and perpendicular to the slope in terms of 

𝑚𝑔 and . 

 

 

 

 

 

 

 

 

 

Points to note from Example 1.18: 

(1) When resolving components of vectors, axes don’t have to be vertical and horizontal. In this 

example, it is more convenient to choose the axes to be parallel to the slope and 

perpendicular to the slope because the box is expected to move along the slope (no 

movement in the direction normal to slope). 

(2) The "side" or component touching or adjacent to  is multiplied by "cos" while the side 

opposite  is multiplied by "sin".  The original vector to be resolved is always the 

hypotenuse of the right angle triangle. 

(3)  When we resolve a vector into its perpendicular components, the vector effectively replaced 

by its two components. We should avoid double counting the original vector.  Normally you 

may leave the original vector visible, but draw the two components in dotted lines to show 

the breakdown. 

 

1.3.2 Scalar multiplication of a vector 
 

When you multiply a vector by a scalar, the direction of the vector is not affected.   

• If the scalar is greater than 1, the magnitude of the vector increases 

• If the scalar is less than 1, the magnitude of the vector decreases 

• If the scalar is 1, then there is no change to the vector. 

• If the scalar is −1, then the vector reverses direction while preserving its original magnitude. 

 

𝑚𝑔 

It is easier to see the 

relation between the 

angles if we model the 

box as a point mass 



National Junior College   Science Department | Physics 

32 
 
 

 

1.3.3 Vector subtraction 
 

Change in a vector 
 

In many physics context, it is common to consider a ‘change in vector’ e.g. change in velocity, 

change in displacement  

Consider an example where we are asked to subtract vectors to determine a change in velocity, 

∆𝑣.   

Since ∆𝑣 = 𝑣𝑓 − 𝑣𝑖 where 𝑣𝑓  and 𝑣𝑖  denote the final and initial velocity of some object 

respectively. 

We can rewrite the above equation as ∆𝑣 = 𝑣𝑓 + (−𝑣𝑖) 

Since multiplying the vector 𝑣𝑖 by −1 just reverses its direction and addition of vectors is the same 

as finding resultant of the vectors, ∆𝒗 is just the resultant of 𝒗𝒇 and (−𝒗𝒊). 

Example 1.19 
 

A car is initially travelling 12 ms-1 due east.   Calculate the change in velocity of the car if its 
final velocity is 

(a) 16 ms-1 due east 

(b)  9 ms-1 due east 

(c)  16 ms-1 due west 

(d) 12 ms-1 at 60 north of east 
 

Solve using Method 1B (Sketch, Cosine rule, sine rule) and Method 2 (resolving vectors).  You 

need to know both methods. 

 

Solution 

 

The change in velocity is given by:  
∆𝑣 = 𝑣𝑓 − 𝑣𝑖 = 𝑣𝑓 + (−𝑣𝑖) i.e. ∆𝑣 is the resultant of 𝑣𝑓 and −𝑣𝑖 

 

 (a) Method 1: 

 

 

 

 

You need to "line up" the vectors when drawing vector diagram to find resultant (same 
technique for 1-D and 2-D vectors) i.e. "head" of one vector must point to the "tail" of 
the next vector.   
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Answer:  4.0 ms-1 due east.  Is this answer consistent with your common sense? 
 

Note: acceleration =
∆𝑣

∆𝑡
=

(Resultant) Force

Mass
 ➔ Direction of ∆𝑣  is the same as the 

direction of resultant force acting on the car.  Hence for ∆𝑣 to increase from 12 m s-1 to 
16 m s-1 in the same direction, the resultant force acting on the car must in the direction 
of 𝑣𝑖. 
 
Method 2 (Resolving vectors): Taking eastwards as positive. 
∆𝑣 = 𝑣𝑓 − 𝑣𝑖 = (+16) − (+12) = +4.0 m s-1.  So 4.0 m s-1 eastward. 

 
 
(b) Method 1 
 
  
 
 
 
Answer:  3.0 m s-1 due west.   
 
Method 2 (Resolving vectors): Taking eastwards as positive. 
∆𝑣 = 𝑣𝑓 − 𝑣𝑖 = (+9) − (+12) = −3.0 m s-1.  So 3.0 m s-1 westward. 

 
(c) Method 1 
 
 
 
 
 
 
Answer:  28 ms-1 due west.  
 
Method 2 (Resolving vectors): Taking eastwards as positive. 
∆𝑣 = 𝑣𝑓 − 𝑣𝑖 = (−16) − (+12) = −28 m s-1.  So 28 m s-1 westward.  

 
(d) Method 1 
 
 
 
 
 
 
 
 

Answer:  12 ms-1 (equilateral triangle) in the direction 60 north of west.  (No need to use 
sine rule and cosine rule if you recognise that the 3 vectors form an equilateral triangle). 
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Method 2 (Resolving vectors): Taking eastwards as positive and northwards as 
positive. 
 
In the eastwards direction 
∆𝑣 = 𝑣𝑓 − 𝑣𝑖 = +12 cos 60 + (−12) = −6  

 
In the northwards direction 
∆𝑣 = 𝑣𝑓 − 𝑣𝑖 = +12 sin 60 + 0 = 10.392  

 

Hence, magnitude of ∆𝑣 = √(−6)2 + (10.392)2 = 12 ms-1 at an angle of 𝜃 = tan−1 (
10.392

6
) =

60°  north of west. 
 

 

Relative velocity 
 

Vector subtraction will also be required when finding the relative velocity of an object.  If car A is 

travelling at velocity 𝑣𝐴⃗⃗⃗⃗  on a road and car B is travelling at velocity 𝑣𝐵⃗⃗ ⃗⃗  on the same road, then the 

following applies: 

 

Velocity of A relative to B, 𝑣 A relative to B = 𝑣𝐴⃗⃗⃗⃗ − 𝑣𝐵⃗⃗ ⃗⃗   

 

You can use "common sense" to understand the above formula (taking rightwards as positive): 

 

 

 

 

 

Relative velocity of car B with respect to car A is looking at how car B is moving from the 

perspective of car A. In Mathematical symbol, we can denote it as VBA. 

B 
3 ms-1 

A 
5 ms-1 

Velocity of A relative to B = 𝟓 − 𝟑 = 2 

ms-1 

B 
3 ms-1 

A 

5 ms-1 

Velocity of A relative to B = −𝟓 − 𝟑 = − 8 

ms-1 

Velocity is a vector, so need to assign rightwards positive.  Since 

A is moving leftwards, its velocity is −5 ms-1. 
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Example 1.20 (modified from 2020 A Level P1Q5)   
 
A car and a bicycle are equal distances from a crossroads. The car is travelling north with a 

speed of 15 m s-1.  The bicycle is travelling east with a speed of 5.0 m s-1. 

 

At this instant, what is the velocity of the bicycle relative to the car?  

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution 

 

𝑣bicycle relative to car = 𝑣bicycle + (−𝑣car) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

Magnitude of 𝑣bicycle relative to car = √52 + 152 = 16 ms-1 

 

at an angle 𝜃 = tan−1 (
15

5
) = 72 south of east. 
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1.3.4 Scalar Product of two vectors (dot product) 
 

Certain quantities such as work done (𝑤) by a force involves the scalar product of two vectors 

(force and displacement).  The scalar product of two vectors, for example, force 𝐹  and 

displacement 𝑠  is defined by:  

𝑤 = 𝐹 ∙ 𝑠 = |𝐹 ||𝑠 | cos q  where  is the angle between 𝐹  and 𝑠  

 

 

It is called a "scalar" product because the final quantity, in this case 𝑤, is a scalar quantity. 

Example 2.9 
 
(a) Calculate the work done by the 10 N force if the displacement is 2.0 m in the direction 
shown below: 
 
Solution 
 

Work done by 10 N force = (10)(2.0) cos 30° = 17.3 J 
 
 
(b) Calculate the work done by the 20 N force if the displacement is 1.0 m in the direction 
shown below: 
 

Work done by 20 N force = (20)(1.0) cos 100° = −3.47 J 
 
Have you encountered negative work done in O level Physics? 
 
Work done by friction is negative 

 

  

The dot is the symbol used to denote the scalar product. 

30 

10 N 

2.0 m 

100 

20 N 

1.0 m 
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ADDITIONAL READING MATERIALS 
 

1. The Importance of Indicating Physical Units in Data 
 

Mars Climate Orbiter Incident 

In 1998, NASA launched the Mars Climate Orbiter to study the Martian climate. 

However, the mission failed because of a mix-up between metric and imperial 

units: 

• NASA’s Navigation Team: Used metric units (millimeters and meters). 

• Lockheed Martin: Provided data in imperial units (inches, feet, and 

pounds). 

This mismatch caused the spacecraft to enter Mars’ atmosphere incorrectly, leading to its 

destruction1. 

Gimli Glider Incident 

 

In 1983, an Air Canada flight ran out of fuel mid-flight due to a similar unit 

conversion error: 

• Canada’s Metrication: Canada switched from imperial to metric units 

in the 1970s. 

• Fuel Calculation Error: The crew calculated fuel in pounds instead of 

kilograms, resulting in only half the needed fuel being loaded. 

The plane, known as the Gimli Glider, had to glide to a safe landing thanks to the pilots’ skill2. 

Why This Matters 

These incidents show why it’s crucial to always indicate physical units in data: 

• Prevents Misunderstandings: Ensures everyone is on the same page, avoiding 

dangerous mistakes. 

• Maintains Accuracy: Accurate data is essential for safety and success in scientific and 

engineering projects. 

• Promotes Consistency: Using standard units helps maintain consistency across different 

teams and systems. 

Understanding and correctly using physical units is vital for the reliability and safety of scientific 

and engineering endeavors. 

 

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://science.nasa.gov/mission/mars-climate-orbiter
https://for.edu.sg/nasa-mco-article
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2. The importance of accounting for experimental uncertainty. 
 

In 2011, scientists working on the OPERA experiment thought they had observed neutrinos 

traveling faster than light. This was surprising because, according to Einstein’s theory of special 

relativity, nothing can travel faster than light. 

What Happened? 

• Initial Observation: The OPERA team announced in September 2011 that neutrinos 

seemed to travel faster than light. This result was unexpected and caused a lot of 

excitement and skepticism in the scientific community. 

• Errors Found: By early 2012, the team discovered two major errors in their experiment:  

o A fiber optic cable was not properly connected, which made the neutrinos appear 

to travel faster. 

o A clock oscillator was ticking too fast, further contributing to the error. 

• Corrections and Confirmation: After fixing these issues, the OPERA team, along with 

other experiments like ICARUS, found that neutrinos travel at speeds consistent with the 

speed of light. 

Why is This Important? 

This incident highlights the importance of carefully accounting for experimental uncertainties. 

Even small mistakes in the setup or measurement can lead to incorrect conclusions. Scientists 

must always double-check their work and be open to scrutiny from others to ensure their findings 

are accurate. 

Understanding and correcting these uncertainties is crucial for the progress of science, as it helps 

maintain the reliability and credibility of scientific discoveries.456 

 

  

 
4 https://en.wikipedia.org/wiki/2011_OPERA_faster-than-light_neutrino_anomaly 
5 https://thereader.mitpress.mit.edu/when-science-fails-opera-neutrinos 
6 https://www.sciencedaily.com/releases/2011/09/110923084425.htm 

https://en.wikipedia.org/wiki/2011_OPERA_faster-than-light_neutrino_anomaly
https://en.wikipedia.org/wiki/2011_OPERA_faster-than-light_neutrino_anomaly
https://en.wikipedia.org/wiki/2011_OPERA_faster-than-light_neutrino_anomaly
https://thereader.mitpress.mit.edu/when-science-fails-opera-neutrinos
https://www.sciencedaily.com/releases/2011/09/110923084425.htm
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APPENDIX 
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