2021 TJC JC2 H2 Chemistry Prelim MCQ Worked Solutions

1	2	3	4	5	6	7	8	9	10
D	С	А	D	А	С	D	В	С	D
11	12	13	14	15	16	17	18	19	20
А	С	D	С	В	D	D	С	С	В
21	22	23	24	25	26	27	28	29	30
В	С	В	В	В	В	В	А	D	С

Qn	Worked Solution					
1.	Answer: D					
	M_r of $E_2 = (1.18 \times 10^{-22}) \times (6.02 \times 10^{23}) = 71.0$					
	$M_r C_2 H_4 E_2 = 99.0$					
	Amount of $C_2H_4E_2$ in 49.5 g = (49.5/99.0) = 0.500 mol					
	No. of E atoms in 49.5 g of $C_2H_4E_2 = 2 \times 0.5 \times 6.02 \times 10^{23} = 6.02 \times 10^{23}$					
2.	Answer: C					
	$^{223}_{88}$ Ra $\longrightarrow ^{219}_{86}$ Q + $^{4}_{2}$ He					
	Number of neutrons in $Q = 219 - 86 = 133$					
3.	Answer: A					
	The long hydrophobic carbon chains on lecithin can form id-id with non-polar molecules.					
	The bond angle with respect to C for –COO group is 120°.					
	It contains delocalized electrons due to the pi bonds.					
4.	Answer: D					
	Of the seventeenth carbon atoms in the ring, two are sp ² hybridized while fifteen are sp ³ hybridised. Because these carbon atoms are bonded in a ring, the atoms can't be lying on the same plane (sp ³ hybridization requires electron pairs to be arranged in a tetrahedral configuration).					
	The C=C double bond is found in a ring, For the molecule to exhibit cis-trans isomerism at this double bond requires the ring to be twisted and bond will be broken. So cis-trans isomerism for a C=C double bond found in a ring is not possible.					
	Cholesterol has a secondary alcohol which is non-acidic.					
5.	Answer: A					
	For gas at stp, PV = nRT					

	1x10 ⁵ x 22700 = 1 x R x 273
	$R = \frac{10^5 \times 22700}{273}$
	pV = nRT, pV = (mass/M)RT
	Density = mass/V = pM / RT
	$=\frac{p\times M\times 273}{T\times 10^5\times 22700}$
6.	Answer: C
	pV = nRT
	Since V and n are constant, $p \propto T$ and $pV \propto T$ (not constant), thus Graph 2 is correct and Graph 1 is incorrect.
	PV = nRT, concentration = n/V, c = P/R (1/T). Since pressure is constant, c \propto 1/T
7.	Answer: D
	In cold/limited amount of water (or when PCI_5 : $H_2O = 1 : 1$):
	$PCI_{5}(s) + H_{2}O(I) \rightarrow POCI_{3}(I) + 2HCI(g)$
	Colourless liquid White fumes
8.	Answer: B
	Since both X and Y form oxides that react with aqueous sodium hydroxide, they cannot be SiO ₂ (which only react with molten NaOH at high temperature).
	Oxide of X is likely to be SO ₂ where S has an oxidation state of +4.
9.	Answer: C
	lodide ions are better reducing agents since S in $SO_4^{2-}(+6)$ is reduced to $SO_2(+4)$, S(0) and H ₂ S(-2).
10.	Answer: D
	Keeping pressure constant, when temp increases % of N ₂ increases \Rightarrow position of equilibrium shifts left to absorb heat. Backward reaction is endothermic, hence forward reaction is exothermic.
	Keeping temperature constant, there is an increase in % N ₂ when pressure changes from P ₂ to P ₁ . Since equilibrium position shifts left where more gaseous molecules are produced, $P_1 < P_2$.
11.	Answer: A
	Statement 1: HC <i>l</i> O is a bronsted acid as it donates a proton. Hence the product formed (C/O- ion) is a conjugate base.
	Statement 2: $N_2H_5^+$ is the Bronsted acid in Reaction 2 as it donates a proton .
	Statement 3: Since the POE lies to the right for both reactions, HC/O is a stronger acid than $N_2H_5^+$ from Reaction 1 as it prefers to donate a proton. Likewise for Reaction 2 where $N_2H_5^+$ is a stronger acid than NH_4^+ .
	Statement 4: N_2H_4 is the Lewis base in Reaction 1 as it donates a lone pair of electrons for dative bonding to a proton from HC/O.
12.	Answer: C
	Both options A & B have excess sodium hydroxide and HC/ respectively after mixing.

	Option C forms phenylamine and unreacted phenylammonium chloride after mixing which is an alkaline buffer.					
	Option D form	ns CH₃CO₂H a	and unreacte	d HCI.		
13.	Answer: D					
	Enthalpy change of solution = -457 – 390 + 918 kJ mol ⁻¹ = +71.0 kJ mol ⁻¹					
	Amount of NaF = 8.4/42 mol = 0.200 mol					
	Heat absorbed by 0.200 mol NaF = 14.2 kJ					
	14.2 x 1000 = mc∆T					
	$14.2 \times 1000 = 250 \times 4.2 \times (T_{initial} - 20)$					
	T _{initial} = 33.52 °C					
14.	Answer: C					
	$\Delta H_{\text{reaction}} = 2(-243) - 2(-20.5) \text{ kJ mol}^{-1} = -445 \text{ kJ mol}^{-1}$					
	As T increases, position of equilibrium shifts left, decreasing yield of sulfur(s).					
15.	Answer: B					
	Consider a pseudo 1^{st} order reaction: rate = $k[A]^{1}[B]^{b}$, where B is in excess. So rate = $k'[A]^{1}$, where k' = $k[B]^{b}$					
	Hence, k' depends on temperature (which affect k), conc of B (excess reactant) and presence of catalyst (which affects activation energy).					
16.	Answer: D					
	Total volume is constant, so vol is proportional to conc of reactants. Relative initial rate of reaction is proportional to (vol of T / time). Hence,					
	Experiment	Volume of S / cm ³	Volume of T / cm ³	Volume of U / cm ³	Initial rate	
	1	10	5	5	0.250	
	2	5	5	5	0.125	
	3	10	5	2.5	0.125	-
	4	10	2.5	5	0.250	
	Comparing experiment 1 and 2, when [S] is halved, initial rate is halved too \rightarrow order wrt [S] = 1				halved too \rightarrow order wrt [S] = 1	
	Comparing ex	Comparing experiment 1 and 4, when [T] is halved, initial rate is remains constant \rightarrow order wrt [T]				
	Comparing ex	periment 1 a	nd 3, when [l	J] is halved, ir	nitial rate is	halved too \rightarrow order wrt [U] = 1
17.	Answer: D					
	Option 1: wro hybridised).	ong as there	are 4 bond	pairs around	B atom a	nd should be tetrahedral shape (sp ³

	A is incorrect as tertiary alcohols cannot be oxidised.
	B is incorrect as ketones cannot be oxidised.
	D is incorrect as side chain oxidation of benzene ring requires acidified potassium manganate(VII) instead.
23.	Answer: B
	Statement 2 is incorrect as LiA/H ₄ would also reduce the ester group. Hydrogen with platinum catalyst can be used instead to only reduce the nitrile.
	Statement 3 is incorrect as W reacts with excess bromoethane to form $RN^{+}(CH_2CH_3)_3$ which is not basic.
	Statement 4 is correct. Y is ethanol and gives a positive iodoform test.
24.	Answer: B
	According to Markovnikov's rule, H would be added to the carbon atom in the C=C with more H. The structures of A and D are incorrect.
	Step 2: From molecular formula of E, bromine is substituted by –CN.
25.	Answer: B
	A is incorrect as the reaction does not involve the ester.
	C is incorrect as it has one missing -CH ₂ .
	D has the double bond at the wrong position.
26.	Answer: B
	Propagation.
	$CH_2Cl_2 + Cl \bullet \rightarrow \bullet CHCl_2 + \underline{HCl}$
	$CH_2Cl_2 + Cl \bullet \rightarrow \bullet CHCl_2 + \underline{HCl}$ $\bullet CHCl_2 + Cl_2 \rightarrow \underline{CHCl_3} + Cl \bullet$
	$CH_{2}Cl_{2} + Cl \bullet \rightarrow \bullet CHCl_{2} + \underline{HCl}$ $\bullet CHCl_{2} + Cl_{2} \rightarrow \underline{CHCl_{3}} + Cl \bullet$ $CHCl_{3} + Cl \bullet \rightarrow \bullet CCl_{3} + HCl$
	$CH_{2}Cl_{2} + Cl \bullet \rightarrow \bullet CHCl_{2} + \underline{HCl}$ $\bullet CHCl_{2} + Cl_{2} \rightarrow \underline{CHCl_{3}} + Cl \bullet$ $CHCl_{3} + Cl \bullet \rightarrow \bullet CCl_{3} + HCl$ $\bullet CCl_{3} + Cl_{2} \rightarrow \underline{CCl_{4}} + Cl \bullet$
	$CH_{2}Cl_{2} + Cl \bullet \rightarrow \bullet CHCl_{2} + \underline{HCl}$ $\bullet CHCl_{2} + Cl_{2} \rightarrow \underline{CHCl_{3}} + Cl \bullet$ $CHCl_{3} + Cl \bullet \rightarrow \bullet CCl_{3} + HCl$ $\bullet CCl_{3} + Cl_{2} \rightarrow \underline{CCl_{4}} + Cl \bullet$ Termination:
	$CH_{2}Cl_{2} + Cl \bullet \rightarrow \bullet CHCl_{2} + \underline{HCl}$ $\bullet CHCl_{2} + Cl_{2} \rightarrow \underline{CHCl_{3}} + Cl \bullet$ $CHCl_{3} + Cl \bullet \rightarrow \bullet CCl_{3} + HCl$ $\bullet CCl_{3} + Cl_{2} \rightarrow \underline{CCl_{4}} + Cl \bullet$ Termination: $\bullet CCl_{3} + \bullet CHCl_{2} \rightarrow \underline{CCl_{3}CHCl_{2}}$
27.	$CH_{2}Cl_{2} + Cl \bullet \rightarrow \bullet CHCl_{2} + \underline{HCl}$ $CHCl_{2} + Cl_{2} \rightarrow \underline{CHCl_{3}} + Cl \bullet$ $CHCl_{3} + Cl \bullet \rightarrow \bullet CCl_{3} + HCl$ $CCl_{3} + Cl_{2} \rightarrow \underline{CCl_{4}} + Cl \bullet$ Termination: $CCl_{3} + \bullet CHCl_{2} \rightarrow \underline{CCl_{3}CHCl_{2}}$ Answer: B (CLT for 2021 exam)
27. 28.	$CH_{2}Cl_{2} + Cl \bullet \rightarrow \bullet CHCl_{2} + \underline{HCl}$ $\bullet CHCl_{2} + Cl_{2} \rightarrow \underline{CHCl_{3}} + Cl \bullet$ $CHCl_{3} + Cl \bullet \rightarrow \bullet CCl_{3} + HCl$ $\bullet CCl_{3} + Cl_{2} \rightarrow \underline{CCl_{4}} + Cl \bullet$ Termination: $\bullet CCl_{3} + \bullet CHCl_{2} \rightarrow \underline{CCl_{3}CHCl_{2}}$ Answer: B (CLT for 2021 exam) Answer: A
27. 28.	$CH_2Cl_2 + Cl \rightarrow CHCl_2 + \underline{HCl}$ $CHCl_2 + Cl_2 \rightarrow \underline{CHCl_3} + Cl \rightarrow CHCl_3 + Cl \rightarrow CCl_3 + HCl$ $CHCl_3 + Cl \rightarrow CCl_3 + HCl \rightarrow CCl_3 + HCl \rightarrow CCl_3 + Cl \rightarrow CCl_3 + Cl \rightarrow CCl_4 + Cl \rightarrow CCl_3 + CHCl_2 \rightarrow \underline{CCl_4} + Cl \rightarrow CCl_3 + CHCl_2 \rightarrow \underline{CCl_3CHCl_2}$ Answer: B (CLT for 2021 exam) Answer: A A: 2-nitrophenol or 4-nitrophenol is formed which is a pale yellow precipitate.
27. 28.	$CH_2Cl_2 + Cl \bullet \Rightarrow \bullet CHCl_2 + \underline{HCl}$ $CHCl_2 + Cl_2 \Rightarrow \underline{CHCl_3} + Cl \bullet$ $CHCl_3 + Cl \bullet \Rightarrow \bullet CCl_3 + HCl$ $CCl_3 + Cl_2 \Rightarrow \underline{CCl_4} + Cl \bullet$ Termination: $CCl_3 + \bullet CHCl_2 \Rightarrow \underline{CCl_3CHCl_2}$ Answer: B (CLT for 2021 exam) Answer: A A: 2-nitrophenol or 4-nitrophenol is formed which is a pale yellow precipitate. B & C: -COCH_3 is ring deactivating while -CH_2CH_3 and -NH_2 are ring activating. Hence, the electron density in phenylethanone is lower. It would undergo nitration at a slower rate and higher temperature.
27. 28.	$CH_{2}Cl_{2} + Cl \rightarrow CHCl_{2} + HCl$ $CH_{2}Cl_{2} + Cl_{2} \rightarrow CHCl_{3} + Cl \rightarrow CHCl_{3} + Cl \rightarrow CCl_{3} + Cl \rightarrow CCl_{3} + HCl$ $CHCl_{3} + Cl \rightarrow CCl_{3} + HCl \rightarrow CCl_{3} + HCl \rightarrow CCl_{3} + Cl \rightarrow CCl \rightarrow CCl_{3} + Cl \rightarrow CCl \rightarrow CCl_{3} + Cl \rightarrow CCl \rightarrow CCl$
27. 28. 29.	$CH_2Cl_2 + Cl \rightarrow CHCl_2 + HCl \rightarrow CHCl_2 + HCl \rightarrow CHCl_2 + HCl \rightarrow CHCl_2 + Cl_2 \rightarrow CHCl_3 + Cl \rightarrow CCl_3 + Cl \rightarrow CCl_3 + HCl \rightarrow CCl_3 + HCl \rightarrow CCl_3 + Cl \rightarrow CCl_3 + HCl \rightarrow CCl_3 + Cl \rightarrow CCl_4 + Cl \rightarrow CCl_3 + Cl_2 \rightarrow CCl_4 + Cl \rightarrow CCl_3 + CHCl_2 \rightarrow CCl_3CHCl_2$ Answer: B (CLT for 2021 exam) Answer: A A: 2-nitrophenol or 4-nitrophenol is formed which is a pale yellow precipitate. B & C: -COCH_3 is ring deactivating while $-CH_2CH_3$ and $-NH_2$ are ring activating. Hence, the electron density in phenylethanone is lower. It would undergo nitration at a slower rate and higher temperature. D: As $-OH$ is ring activating, it does not require concentrated sulfuric acid to generate the electrophile. Answer: D
27. 28. 29.	CH ₂ Cl ₂ + Cl • → • CHCl ₂ + <u>HCl</u> • CHCl ₂ + Cl ₂ → <u>CHCl₃</u> + Cl • CHCl ₃ + Cl • → • CCl ₃ + HCl • CCl ₃ + Cl ₂ → <u>CCl₄</u> + Cl • Termination: • CCl ₃ + • CHCl ₂ → <u>CCl₃CHCl₂</u> Answer: B (CLT for 2021 exam) Answer: A A : 2-nitrophenol or 4-nitrophenol is formed which is a pale yellow precipitate. B & C: -COCH ₃ is ring deactivating while –CH ₂ CH ₃ and –NH ₂ are ring activating. Hence, the electron density in phenylethanone is lower. It would undergo nitration at a slower rate and higher temperature. D: As –OH is ring activating, it does not require concentrated sulfuric acid to generate the electrophile. Answer: D During discharging, the cell behaves as a galvanic cell, hence reaction is spontaneous, ΔG is negative.

	For 2 mol of electrons transferred during discharge, the overall equation is Pb + PbO ₂ + 2H ⁺ + $2HSO_4^- \rightarrow 2PbSO_4 + 2H_2O$. As the cell discharges, [H ⁺] decreases, hence pH increases.
30.	Answer: C
	$2CI^{-} \rightarrow CI_2 + 2e^{-}$
	$4OH^- \rightarrow O_2 + 2H_2O + 4e^-$
	Same 10 cm ³ volume i.e. same mole of Cl_2 and O_2 are produced, hence amount of electron transfer in electrolysis 2 is double that of electrolysis 1.
	Q = It = nF, since time t and F are constant, doubling n would double current I.