2017 Y6 H2 Math Preliminary Examination Paper 2 Page 1 of 16

	Or:	
	$ \overline{AB} = \begin{pmatrix} 5 \\ -2 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix}, \overline{AC} = \begin{pmatrix} 4 \\ 1 \\ -2 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix} $ Area of $\triangle ABC$	
	$= \frac{1}{2} \overline{AB} \times \overline{AC} $	
	$=\frac{1}{2}\begin{bmatrix}3\\-5\\4\end{bmatrix}\times\begin{bmatrix}2\\-2\\-1\end{bmatrix}$	
	$ = \frac{1}{2} \begin{bmatrix} 13 \\ 11 \\ 4 \end{bmatrix} = \frac{\sqrt{306}}{2} $	
	Area of $\triangle ABM = \frac{1}{2}$ Area of $\triangle ABC = \frac{\sqrt{306}}{4} = \frac{3\sqrt{34}}{4}$	
(ii)	(2) (3)	Most candidates
[4]	$l_{AB}: \mathbf{r} = \begin{pmatrix} 2\\3\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 3\\-5\\4 \end{pmatrix}, \lambda \in \mathbb{R}$	demonstrated understanding
	Since point N is on the line AB ,	of the concept of finding \overline{MN} and using it to find λ . A
	$\overline{ON} = \begin{pmatrix} 2\\3\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 3\\-5\\4 \end{pmatrix} \text{ for some } \lambda$	significant number of the candidates who got the wrong
	$\begin{bmatrix} 3 & +\lambda & -3 \\ -1 & 4 \end{bmatrix}$ for some λ	answer made careless
	$ \left(3\lambda - 1 \right) $	mistakes in the following arithmetic operations i.e.
	$\overline{MN} = \begin{pmatrix} 3\lambda - 1 \\ 1 - 5\lambda \\ \frac{1}{2} + 4\lambda \end{pmatrix}$	$\overrightarrow{MN} = \overrightarrow{ON} - \overrightarrow{OM}$
		$= \begin{pmatrix} 2+3\lambda \\ 3-5\lambda \\ -1+4\lambda \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ -1.5 \end{pmatrix}$
	For \overline{MN} to be perpendicular to \overline{AB} , $\overline{MN}.\overline{AB} = 0$	$\begin{pmatrix} -1+4\lambda \end{pmatrix} \begin{pmatrix} -1.5 \end{pmatrix}$
	$(3\lambda-1)(3)$	_(!)
	$\begin{pmatrix} 3\lambda - 1 \\ 1 - 5\lambda \\ \frac{1}{2} + 4\lambda \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix} = 0$	(2.5) 42)
	\"- '	and
	$\lambda = \frac{3}{25}$	$\left(\begin{array}{c} 3\lambda-1 \\ \end{array}\right)\left(\begin{array}{c} 3 \end{array}\right)$
	(2) (2) (50)	$\begin{vmatrix} 3\lambda - 1 \\ 1 - 5\lambda \\ 1/2 + 4\lambda \end{vmatrix} \cdot \begin{pmatrix} 3 \\ -5 \\ 4 \end{vmatrix} = 0$
	$\overline{ON} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + \frac{3}{25} \begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix} = \frac{1}{25} \begin{pmatrix} 59 \\ 60 \\ 12 \end{pmatrix}$	······+2+82=0
_	1 (-) (-) (-13)	

Qn 2	是是"A"(1965) A Cook And	Comments
(a)(i) [1]	$\begin{vmatrix} \frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1} = \frac{r(r+1) - 2(r-1)(r+1) + r(r-1)}{r(r-1)(r+1)} \\ = \frac{r^2 + r - 2(r^2 - 1) + r^2 - r}{r(r-1)(r+1)} \\ = \frac{2}{r(r-1)(r+1)}$	Almost all students managed to show this. Just a note that it might be easier to start from LHS and combine the fraction to arrive at RHS instead of trying to break up RHS into partial fractions.
(a)(jir) 14]	$\sum_{r=3}^{n} \frac{4}{r(r-1)(r+1)} = 2\sum_{r=3}^{n} \frac{2}{r(r-1)(r+1)}$ $= 2\sum_{r=3}^{n} \left(\frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1}\right)$ $= 2\left[\frac{1}{2} - \frac{2}{3} + \frac{1}{4}\right]$	Most students were able to recognize that this involved MOD. However, some common mistakes were still prevalent: 1. Forgot about the factor 2, i.e.
	$ \begin{array}{c} +\frac{1}{3} - \frac{1}{4} + \frac{1}{5} \\ +\frac{1}{4} - \frac{1}{5} + \frac{1}{6} \\ +\frac{1}{5} - \frac{1}{6} + \frac{1}{7} \\ +\frac{1}{n - 3} - \frac{2}{1 - 2} + \frac{1}{n - 1} \\ +\frac{1}{n - 2} - \frac{2}{1 - 1} + \frac{1}{n} \end{array} $	$\sum_{r=3}^{n} \frac{4}{r(r-1)(r+1)}$ $= \sum_{r=3}^{n} \left(\frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1}\right)$ 2. Did not write down the correct leftover terms after the cancellations, i.e either missed out $\frac{1}{3}$ or $\frac{1}{n}$ in the final expression.
	$ + \frac{1}{n/1} - \frac{2}{n} + \frac{1}{n+1} $ $ = 2\left(\frac{1}{6} - \frac{1}{n} + \frac{1}{n+1}\right) = \frac{1}{3} - \frac{2}{n} + \frac{2}{n+1} $	3. Question mentioned that "There is no need to express answer as a single algebraic fraction" but that does not mean that liked terms need not be simplified.
		4. Some students tried to split the sum up without realizing that r cannot start

2017 Y6 H2 Math Preliminary E	xamination Paper 2 Page 3 of 16
-------------------------------	------------------------------------

		from 1, e.g.
		$\sum_{r=3}^{n} \left(\frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1} \right)$
		$= \sum_{r=1}^{n} \left(\frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1} \right)$
		$-\sum_{r=1}^{2} \left(\frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1} \right)$
(b)(i)	Amount Amy saves in nth week	Students need to recognize
[2]	=25+(n-1)(4)=21+4n	the use of GC for these 2 parts based on the number of
	Amount Ben saves in <i>n</i> th week = $ar^{n-1} = 2(1.22)^{n-1}$	marks and also the nature of the inequality which is not
	When Ben saves more than Amy,	easy to solve algebraically. There were a number of
	$2(1.22)^{n-1} > 21 + 4n$	students who could not progress after forming the
	From GC,	inequality.
	in the 20th week, Amy saves \$101, Ben saves \$87.47	Some common mistakes made for both (i) and (ii):
	in the 21st week, Amy saves \$105, Ben saves \$106.72	1. Use the sum of AP and
	Hence, Ben first saves more than Amy in the 21st week.	GP formulae for both parts.
	Or: $2(1.22)^{n-1} > 21 + 4n \implies 2(1.22)^{n-1} - 21 - 4n > 0$	2. Use only the <i>n</i> th term formulae for both parts.
	When $n = 20$, $2(1.22)^{n-1} - 21 - 4n = -13.5 < 0$	3. Forgot either the sum of AP/GP formula or the nth
	When $n = 21$, $2(1.22)^{n-1} - 21 - 4n = 1.72 > 0$	term formula for AP/GP.
1	Total amount in Amy's account after nth week,	4. Take $r = 0.22$.
(100)		
131	$= \frac{n}{2} (2a + (n-1)d) = \frac{n}{2} (50 + (n-1)(4)) = \frac{n}{2} (46 + 4n)$	
	Total amount in Ben's account after nth week,	
	$=\frac{a(r^n-1)}{r-1}=\frac{2(1.22^n-1)}{1.22-1}$	
	For their total saving to exceed \$2400,	
ولارا	$\frac{n}{2}(46+4n) + \frac{2(1.22^n - 1)}{1.22 - 1} > 2400$	
CO.C.	From GC,	
	in the 22nd week, total savings= \$2186.89 < \$2400	

²⁰¹⁷ Y6 H2 Math Preliminary Examination Paper 2 Page 4 of 16

Raffles Institution H2 Mathematics

	2017 Year 6
in the 23rd week, total savings= \$2458.72 > \$2400	
\therefore least $n=23$.	
Hence, their total saving will exceed \$2400 after 23 complete weeks.	

Qn	2 Charles on The Control of the Cont	
(i)		Comments
(2)	$f(x) = R\sin(x+\alpha) = R\sin x \cos \alpha + R\cos x \sin \alpha$ compare with $f(x) = \sqrt{3}\sin x + \cos x$ $\Rightarrow R\cos \alpha = \sqrt{3}, R\sin \alpha = 1$	α Most students are able to do this part correctly.
	$\Rightarrow R = \sqrt{1^2 + \sqrt{3}^2} = 2$, $\alpha = \tan^{-1} \frac{1}{\sqrt{3}} = \frac{\pi}{6}$	
*(ii) 7	$(0,1)$ $(0,1)$ $(\frac{\pi}{3},2)$ $(\frac{5\pi}{6},0)$ $(\pi,-1)$ $y = f(x)$ the range of f is $(-1,2]$.	Students have to learn to read the question carefully. Many did not label the intercepts. Students also need to consider the domain of f and indicate the coordinates of the end points on the sketch. Quite a handful miss out the open circle on both the end points. A few did not write down the range although they got the graph correct, which is very wasteful.
	$(0,1)$ $y = 1$ $y = f(x)$ $(\pi, -1)$	The key word here is "exactly". This means that students have to show algebraic working to get the correct value of $\frac{2\pi}{3}$. Answers without working will not get any credit.

Raffles	Institution H2 Mathematics	2017 Year 6
	$f(x) = 2\sin(x + \frac{\pi}{6}) = 1$	
	$\Rightarrow x + \frac{\pi}{6} = \frac{\pi}{6} \text{ or } \pi - \frac{\pi}{6}$	
	$\Rightarrow x = 0 \text{ or } \frac{2\pi}{3}$	
	The set of values of x is $\left[\frac{2\pi}{3},\pi\right]$	
(iv) [1]	$g(x) = 2\cos\left(x + \frac{\pi}{6}\right), -\frac{\pi}{6} \le x \le b.$	
($y = 2\cos\left(x + \frac{\pi}{6}\right)$	
	(5π 2)	
	$\left(\frac{5\pi}{6}, -2\right)$	
	For g ⁻¹ to exist, g has to be a 1-1 function. The largest exact value of b, is $\pi - \frac{\pi}{6} = \frac{5\pi}{6}$.	
(v) [3]	The domain of g^{-1} = the range of $g = [-2,2]$. Range of $f = (-1,2] \subseteq$ Domain of $g^{-1} = [-2,2]$, therefore g^{-1} f exists.	
	$g^{-1} f(x) = x, 0 < x < \pi$ g(x) = f(x)	
	$2\cos(x+\frac{\pi}{6}) = 2\sin(x+\frac{\pi}{6})$	
	$\tan(x + \frac{\pi}{6}) = 1$ $x + \frac{\pi}{6} = \frac{\pi}{4}$	Many students failed to see that the easiest way to solve this is to solve $g(x) = f(x)$. Many proceeded to find the function $g^{-1} f(x)$.
	$x = \frac{\pi}{12}$	

(Note: $0 < x \le \frac{5\pi}{6}$ considering domain of f and g)	Again the key word is "exactly". Marks will not be awarded for answers without algebraic working.

Qn 4	Comments
(i) $l_1: \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 12 \\ 4 \end{pmatrix}, \ \lambda \in \mathbb{R}$ $l_2: \mathbf{r} = \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -3 \\ 1 \\ 4 \end{pmatrix}, \ \mu \in \mathbb{R}$ Since $\begin{pmatrix} -3 \\ 12 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} -3 \\ 1 \\ 4 \end{pmatrix}$ are not parallel, l_1 are not parallel, l_2 are not parallel. If the two lines intersect, there will be a unique value of λ and μ for the system of equations $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 12 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -3 \\ 1 \\ 4 \end{pmatrix}$ $-3\lambda + 3\mu = 1 \qquad (1)$ $12\lambda - \mu = 4 \qquad (2)$ $4\lambda - 4\mu = 0 \qquad (3)$ Using GC, no solution of λ and μ exist. Hence, the lines do not intersect.	paraliel.
Hence, l_1 and l_2 are skew lines. A normal to $p = \begin{pmatrix} -3 \\ 12 \\ 4 \end{pmatrix} \times \begin{pmatrix} -3 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 44 \\ 0 \\ 33 \end{pmatrix} = 11 \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$	Most students did well for this part, although there were a few who did not give the final equation in cartesian form.

2017 Y6 H2 Math Preliminary	Examination Paper 2
2017 YE HZ MALITY CHIMES,	Page 7 of 16

Since $(1, 4, 1)$ lies on l_2 which is on p ,	
$\begin{pmatrix} 1\\4\\1 \end{pmatrix}, \begin{pmatrix} 4\\0\\3 \end{pmatrix} = 7$	
Hence a cartesian equation for p is	
4x+3z=7.	
(iii) $\{0, 0, 1\}$ is a point on l_1 .	Note that this method is much faster than finding foot of perpendicular, F
101	from A to I_1 and then taking the length of
$\begin{bmatrix} 0 \\ a \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ a \\ 0 \end{bmatrix}$	\overline{AF} .
(1) (1) (0)	
	Instead of factorising a out from
Distance from A to l	V4aV
(0) (-3)	0 , most students simplify the
a × 12 /42 / (4)	3a
$ = \frac{\begin{vmatrix} a \\ 0 \end{vmatrix} \times \begin{vmatrix} 12 \\ 4 \end{vmatrix}}{\begin{vmatrix} -3 \\ 12 \end{vmatrix}} = \frac{1}{13} \begin{vmatrix} 4a \\ 0 \\ 3a \end{vmatrix} = \frac{1}{13} \begin{vmatrix} 4 \\ 0 \\ 3 \end{vmatrix} = \frac{5}{13} \begin{vmatrix} 4 \\ 0 \\ 3 \end{vmatrix} = \frac{5}{13} \begin{vmatrix} 4 \\ 0 \\ 3 \end{vmatrix} = \frac{5}{13} \begin{vmatrix} 4 \\ 0 \\ 3 \end{vmatrix} = \frac{5}{13} \begin{vmatrix} 4 \\ 0 \\ 3 \end{vmatrix} = \frac{5}{13} \begin{vmatrix} 4 \\ 0 \\ 3 \end{vmatrix} = \frac{5}{13} \begin{vmatrix} 4 \\ 0 \\ 3 \end{vmatrix} = \frac{5}{13} \begin{vmatrix} 4 \\ 0 \\ 3 \end{vmatrix} = \frac{5}{13} \begin{vmatrix} 4 \\ 0 \\ 3 \end{vmatrix} = \frac{5}{13} \begin{vmatrix} 4 \\ 0 \\ 3 \end{vmatrix} = \frac{5}{13} \begin{vmatrix} 4 \\ 0 \\ 3 \end{vmatrix} = \frac{5}{13} \begin{vmatrix} 4 \\ 0 \\ 3 \end{vmatrix} = \frac{5}{13} \begin{vmatrix} 4 \\ 0 \\ 0 \end{vmatrix} $	a expression using definition, i.e.,
-3 13 3 13	$\begin{pmatrix} 4a \\ 0 \end{pmatrix} = \sqrt{(4a)^2 + 0^2 + (3a)^2} = \sqrt{25a^2} .$
12	$0 = \sqrt{(4a)^2 + 0^2 + (3a)^2} = \sqrt{25a^2}$
1 4 1	30
	which many mistakenly simplify as 5a
	instead of 5 a , hence obtaining only
	one value of a as final answer in the last
(1, 4, 1) is a point on p.	step.
(1, 4, 1) is a point on p.	
(0) (1) (-1)	Similarly, this method is much faster
$ \begin{pmatrix} 0 \\ a \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ a-4 \\ 0 \end{pmatrix} $	than finding foot of perpendicular, N
	from A to p and then taking the length of
	\overline{AN} .
Distance from A to	p
V -1) (4)	Many of those who attempted to find
0-410	\overline{OF} and \overline{ON} committed careless
1 2 3	mistakes and lost marks for not getting
$=\frac{(0)(3)}{(3)}=\frac{1}{3}-4=\frac{4}{3}$	the correct position vectors and
$ = \frac{\begin{bmatrix} a-4 \\ 0 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix}}{\begin{bmatrix} 4 \\ 1 \end{bmatrix}} = \frac{1}{5} \begin{vmatrix} -4 \\ 1 \end{bmatrix} = \frac{4}{5} $	distances.
0	

2017 Y6 H2 Math Preliminary Examination Paper 2 Page 8 of 16

 $P(X \cup Y') = 1 - P(Y) + P(X \cap Y)$

 $=1-\frac{4}{3}\left(\frac{1}{2}\right)+\frac{1}{3}$

/ difference which eventually worked out

Those students who drew a Venn diagram were generally quick and successful in identifying the correct

to be P(Y') instead.

E.	Qn 5	
	[2]	Comments
	$P(X Y) = \frac{1}{2}$	Most students were able to do this part correctly.
-	$P(X \cap Y)$	correctly.
- 1	$\Rightarrow \frac{P(X \cap Y)}{P(Y)} = \frac{1}{2}$	The most common method used was to
	1 (1)	apply standard results to obtain equations
	$\Rightarrow P(X \cap Y) = \frac{1}{2}P(Y)$	connecting $P(X)$, $P(Y)$ and $P(X \cap Y)$.
	D(V) V) 2	Unfortunately, some wrong formula were
	$P(Y X) = \frac{2}{3}$	seen, for example:
	$\Rightarrow \frac{P(X \cap Y)}{P(X)} = \frac{2}{3}$	$P(X Y) = \frac{P(X \cap Y)}{P(X)} \text{ instead of } \frac{P(X \cap Y)}{P(Y)},$
	P(X) 3	$P(Y X) = \frac{P(Y \cap X)}{P(Y)}$ instead of $\frac{P(Y \cap X)}{P(X)}$,
-	$\Rightarrow P(X \cap Y) = \frac{2}{3}P(X)$	and most frequently, $P(X)$
	3 (2)	$P(X \cup Y) = P(X) + P(Y) + P(X \cap Y)$
		instead of $P(X) + P(Y) - P(X \cap Y)$.
	$P(X \cap Y) = \frac{1}{2}P(Y) = \frac{2}{3}P(X)$	
	2 3	Interestingly, there were a few students
1	5/4 45 5	who used their GC to solve the three
	$P(X \cup Y) = \frac{3}{6}$	equations, obtaining $P(X) = \frac{1}{2}$, $P(Y) = \frac{2}{3}$
	$\Rightarrow P(X) + P(Y) - P(X \cap Y) = \frac{5}{6}$	and $P(X \cap Y) = \frac{1}{3}$ all at one go.
	$\Rightarrow P(X) + \frac{4}{3}P(X) - \frac{2}{3}P(X) = \frac{5}{6}$	
1	$\frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{6} \frac{1}{6}$	
١.	$ \Rightarrow P(X) = \frac{1}{2} $	
(A)	$P(X \cap Y) = \frac{2}{3}P(X) = \frac{2}{3}(\frac{1}{2}) = \frac{1}{3}$	Significant fewer number of students
18T	$\int_{0}^{\infty} P(x \cap r) = \frac{1}{3}P(x) = \frac{1}{3}(\frac{1}{2}) = \frac{1}{3}$	were able to handle this part well.
		The most common problem was the
	11 % X Y 1	failure to understand $P(X \cup Y')$.
- 1		
- 1		A large number of students tried to
- 1	$I \setminus X / I$	simplify it through the result
- 1		$P(X \cup Y') = P(X) + P(Y') - P(X \cap Y'),$
1.	X UY'	but often end up with a complicated sum

region and thus were able to obtain the correct answer rather effortlessly Comments [6] Let X = W - 100. Then we have $\sum x = 26$, $\sum x^2 = 273$ Define your random variable if $\overline{w} = \frac{1}{50} \sum x + 100 = \frac{26}{50} + 100 = 100.52$ you are not using $\left| s_{w}^{2} = s_{s}^{2} = \frac{1}{n-1} \left[\sum_{x} x^{2} - \frac{\left(\sum_{x} x\right)^{2}}{n} \right]$ Do not confuse μ with w. If we $=\frac{1}{49}\left(273-\frac{26^2}{50}\right)$ know the population mean, there would be no need to perform hypothesis testing. To test $H_0: \mu = 100 \text{ vs } H_1: \mu > 100$ Perform a 1-tail test at 3% level of significance. Under H_0 , $\overline{W} \sim N\left(\mu_0, \frac{s^2}{n}\right)$ approximately where $\mu_0 = 100$ and W is normally distributed, so do not quote CLT. n = 50However, there is Using a z - test, still an p - value = 0.0550 (3 s.f.)approximation due to use of the unbiased estimate Since p - value = 0.0550 > 0.03, we do not reject H_0 and of population conclude that there is insufficient evidence, at 3% significance variance. level, that the salesman made an understatement on the average power consumption of the Effixion laptops. [4] To test $H_0: \mu = 100 \text{ vs } H_1: \mu > 100$ Perform a 1-tail test at 1% level of significance. Sample variance is Sample variance = 6.25neither population variance, nor its $s^2 = \frac{n}{n-1} [\text{sample variance}]$ unbiased estimate.

$=\frac{50}{49}(6.25)=6.37755$	Note the alternative
In order to reject H_0 at 1% level of significance, we need $P(\overline{W} > \overline{w}) \le 0.01 \text{ where } \overline{W} \sim N\left(100, \frac{6.37755}{50}\right) \text{ approximately}$	hypothesis is right-tailed.
$\Rightarrow P(\vec{W} < \vec{w}) \ge 0.99$ $\Rightarrow \vec{w} \ge 100.8308$	Standardisation is not necessary, as parameters of \overline{W}
Or $z - value \ge z_{0.99}$	are assumed to be known in the test.
$\frac{\overline{w} - 100}{\sqrt{\frac{6.37755}{50}}} \ge 2.3263$ $\overline{w} \ge 100.8308 \text{ (4 d.p.)}$	Due to rounding off, 100.83 is not within the range, while 100.84 is.
Set of values of \overline{w} is $\{\overline{w} \in \mathbb{R} : \overline{w} > 100.83\}$ or $\{\overline{w} \in \mathbb{R} : \overline{w} \ge 100.84\}$	

· · · · · · · · · · · · · · · · · · ·	Comments
(i) Die shows $\frac{1}{1}$ $\frac{2}{1}$ $\frac{3}{1}$	This is NOT the usual 6 sided die. Using a table of this form will help to determine the total score of 2 rolls easily.
= P(total score is 2) + P(total score is 3)	For P(total score is 3), there are 2 cases: 1st roll 1 & 2nd roll 2 or 1st roll 2 & 2nd roll 1.
$= \frac{5}{36}$ Let Y be the number of rounds, out of 20, that Adrian pays	Define the random variable Y properly and state its distribution.
Benny. $Y \sim B\left(20, \frac{5}{36}\right)$	Be careful when taking the complement as the GC can only compute $P(Y \le k)$ and not
$P(Y \ge 5)$ = 1 - $P(Y \le 4)$ = 0.134 (3 s.f.)	P(Y < k) for Binomial Distributions.

				1116
ii) 5]	Me P(to	that score is 4) = $\left(\frac{1}{6} \times \frac{1}{2}\right) 2 + \frac{1}{3} \times \frac{1}{3} = \frac{5}{18}$ thod 1: otal score is 5 or 6) = $1 - \left(\frac{1}{36} + \frac{1}{9} + \frac{5}{18}\right) = \frac{7}{12}$ total score is 5 or 6) = $\left(\frac{1}{3} \times \frac{1}{2}\right) 2 + \frac{1}{2} \times \frac{1}{2} = \frac{7}{12}$	does not that yet track. Use M finding is was to he	and 1 is faster, but it not "help to check" ou are on the right whethod 2 (unlessing this probability by too long/tedious) by you check that $f(X = x) = 1$.
	1 2	iven: X represents Benny's winnings in each round $ \frac{x}{P(X=x)} = \frac{6}{1} = \frac{3}{16} = \frac{-2}{18} $ $ E(X) = -\frac{1}{18} $ Since $E(X) < 0$, Benny is expected to lose in the long run. Thus, Benny should not accept Adrian's invitation to play the game.	that chee	by did not realize x can be zero. Do ck that $P(X = x) = 1$. If the subabilities do not add, check the individual obabilities and also evaluate if there were issing x values. $E(X)$ is the long-run verage winnings of Benny in one round. Thus, $E(X) < 0$ does not imply that Benny is expected to lose every round.
	(iii) [1]	For the game to be fair, $E(X) = 0$. $\frac{a}{36} + \frac{1}{3} - \frac{10}{18} = 0$ $a = 8$		

Some did not find the (bii) Let W be the random variable denoting the family's distribution of the monthly saving in dollars. W = T + 1500 - V, where DIFFERENCE between 2 T denotes Mr Tan's monthly income. months. Then $W \sim N(7500 - 5067, 1000^2 + 0 + 650^2)$ For modulus sign: i.e. $W \sim N(2433, 1422500)$ and $W_1 - W_2 \sim N(0, 2845000)$ $\Rightarrow P(|W_1 - W_2| > 1000)$ $=2P(W_1-W_2<-1000)$ = 0.553 (3sf)-1000 We need to assume It is assumed that Mr Tan's income and the family's INDEPENDENCE to be able to expenditure in a particular month are independent. Alternatively, Mr Tan's income and the family's add and subtract normal distributions to obtain new expenditure in a month are independent of what he normal distributions. earned and how much the family spent in another month.

Raffles Institution H2 Mathematics

2017 Y6 H2 Math Preliminary Examination Paper 2

Qu	10	Comments
Qq (a) [3]	Complement Method: Probability =1 - P(22 people were all born on different days) =1 - P(21 people were all born on different days) $\times \frac{3}{2}$ $\approx 1 - 0.55631 \times \frac{344}{365}$ = 0.476 (3sf) Alternative method: P(at least 2 with same date of birth in 21 people) + P(21 people all born on different days and 22 nd pe shares same date of birth with someone else) = (1 - 0.55631) + (0.55631) $\times \frac{21}{365}$	365 - 21 365 It is inappropriate to describe the distribution of the number of people who shares the same date of birth as someone else in the group as following the Binomial distribution. There may be more than one common date of birth!
(bi)	Number of ways = ${}^{3}C_{1} \times {}^{6}C_{4} \times {}^{9}C_{4} \times {}^{4}C_{2} = 34020$	
(ii) [3]	Complement Method:	idfielder and
1	(iii) Let A denote the event that player 1 and player the team. Let B denote the event that player 4 and player the team. $n(A) = {}^{6}C_{4} \times {}^{8}C_{3} \times {}^{4}C_{2} = 5040$ $n(B) = {}^{3}C_{1} \times {}^{5}C_{3} \times {}^{8}C_{3} \times {}^{4}C_{2} = 10080$ $n(A \cap B) = {}^{5}C_{3} \times {}^{7}C_{2} \times {}^{4}C_{2} = 1260$ $\therefore n(A \cup B) = 5040 + 10080 - 1260 = 13860$ Hence required probability = $1 - \frac{13860}{34020} = \frac{16}{27}$	not number of ways. 2) There are many different methods available for this part, but no matter which one you apply, do always check whether your cases are mutually exclusive (ie

²⁰¹⁷ Y6 H2 Math Preliminary Examination Paper 2